Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arthritis Rheumatol ; 75(4): 553-566, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36240108

RESUMO

OBJECTIVE: To determine the efficacy of CXCL5 administration in lupus-prone MRL/lpr (Faslpr ) mice and elucidate its working mechanisms. METHODS: CXCL5 expression in blood (obtained from SLE patients and Faslpr mice) and major internal organs (obtained from Faslpr mice) was examined by Luminex, real-time polymerase chain reaction, and immunofluorescent staining analyses. Pharmacokinetic studies were performed in Faslpr mice and healthy Institute of Cancer Research mice. Efficacy of CXCL5 administration was demonstrated in Faslpr mice, and the working mechanism of CXCL5 treatment was elucidated by flow cytometry, Luminex, and RNA sequencing. RESULTS: In SLE patients, serum CXCL5 levels were significantly lower than in healthy individuals (P < 0.0001) and negatively correlated with disease activity (P = 0.004). In Faslpr mice, disease severity progressed with age and was negatively associated with plasma CXCL5 levels. Intravenous administration of CXCL5 to Faslpr mice restored endogenous circulatory CXCL5, improved mice survival, and reduced anti-double-stranded DNA antibodies, proteinuria, lupus nephritis activity and chronicity indices, renal complements, and neutrophil extracellular traps over short-term (10 weeks) and long-term (2 years) time periods. In vitro and in vivo assays demonstrated that CXCL5 dictated neutrophil trafficking and suppressed neutrophil activation, degranulation, proliferation, and renal infiltration. Renal and splenic RNA sequencing further showed that CXCL5-mediated immunomodulation occurred by promoting energy production in renal-infiltrated immune cells, activating certain T cells, and reducing tissue fibrosis, granulocyte extravasation, complement components, and interferons. Further factorial design results indicated that CXCL5 appears to enhance host tolerability to cyclophosphamide in vulnerable individuals. CONCLUSION: We found that serum CXCL5 levels were significantly lower in SLE patients than in healthy individuals and were negatively correlated with disease activity. By administering CXCL5 intravenously in a mouse model of lupus, mouse survival improved, and indices of disease activity reduced significantly. Taken together, these findings indicate CXCL5 administration may represent a novel myeloid/neutrophil-targeting therapy for SLE.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Camundongos , Animais , Neutrófilos/metabolismo , Camundongos Endogâmicos MRL lpr , Rim/metabolismo , Inflamação/metabolismo , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/metabolismo
2.
Biol Blood Marrow Transplant ; 24(10): 1971-1980, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29883796

RESUMO

The immunosuppressive properties of mesenchymal stromal cells (MSCs) have been clinically proven to be effective in treating graft-versus-host disease (GVHD). However, MSC therapy is limited by the need for laborious and expensive manufacturing processes that are fraught with batch-to-batch variability. Substitution of MSC therapy with key MSC-mediated immunomodulatory factors could be an option for GVHD treatment. Using a simulated in vitro model of the immunosuppressive effects of MSC on allogeneic graft reactions, a synergistic 2-factor combination (2FC) of CXCL5 and anti-CCL24 was identified from a panel of over 100 immunomodulatory factors as being superior to MSCs in the modulation of mixed lymphocyte reactions. This 2FC was superior to cyclosporine in ameliorating both moderate and severe GVHD while being equivalent to MSCs in moderate GVHD and superior to MSCs in severe GVHD. Its immunosuppressive efficacy could be further improved by extended treatment. Mechanistic studies revealed that in vitro the 2FC could only reduce the proliferation of Th 1 and Th 17, whereas in vivo CXCL5 acts in concert with anti-CCL24 antibody to reduce not only transplanted Th 1 and Th 17 but also cytotoxic T lymphocytes and natural killer cells to increase mouse immunosuppressive neutrophils without affecting human hematopoietic stem cell reconstitution. Concurrently, it reduced circulating human proinflammatory cytokines IFN-γ, IL-6, IL-17A, IL-8, macrophage inflammatory protein-1ß, and monocyte chemoattractant protein-1. Both in vitro and in vivo data suggest that CXCL5 and anti-CCL24 antibody act in concert to ameliorate GVHD via suppression of Th 1 and Th 17 responses. We propose that this novel 2FC could substitute for MSC therapy in GVHD treatment.


Assuntos
Quimiocina CCL24/farmacologia , Quimiocina CXCL5/farmacologia , Ciclosporina/farmacologia , Doença Enxerto-Hospedeiro/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/imunologia , Animais , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/patologia , Xenoenxertos , Humanos , Linfócitos/imunologia , Linfócitos/patologia , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos ICR , Camundongos Endogâmicos NOD , Camundongos SCID
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...