Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE J Biomed Health Inform ; 28(7): 4184-4193, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593020

RESUMO

Detecting Alzheimer's disease (AD) accurately at an early stage is critical for planning and implementing disease-modifying treatments that can help prevent the progression to severe stages of the disease. In the existing literature, diagnostic test scores and clinical status have been provided for specific time points, and predicting the disease progression poses a significant challenge. However, few studies focus on longitudinal data to build deep-learning models for AD detection. These models are not stable to be relied upon in real medical settings due to a lack of adaptive training and testing. We aim to predict the individual's diagnostic status for the next six years in an adaptive manner where prediction performance improves with the number of patient visits. This study presents a Sequence-Length Adaptive Encoder-Decoder Long Short-Term Memory (SLA-ED LSTM) deep-learning model on longitudinal data obtained from the Alzheimer's Disease Neuroimaging Initiative archive. In the suggested approach, decoder LSTM dynamically adjusts to accommodate variations in training sequence length and inference length rather than being constrained to a fixed length. We evaluated the model performance for various sequence lengths and found that for inference length one, sequence length nine gives the highest average test accuracy and area under the receiver operating characteristic curves of 0.920 and 0.982, respectively. This insight suggests that data from nine visits effectively captures meaningful cognitive status changes and is adequate for accurate model training. We conducted a comparative analysis of the proposed model against state-of-the-art methods, revealing a significant improvement in disease progression prediction over the previous methods.


Assuntos
Doença de Alzheimer , Aprendizado Profundo , Progressão da Doença , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/diagnóstico , Humanos , Idoso , Masculino , Feminino
2.
Artigo em Inglês | MEDLINE | ID: mdl-38083660

RESUMO

With an increase in life expectancy, there has been an increase in the aged population globally, and around 10% of this population suffers from Alzheimer's disease. Alzheimer's hugely impacts the quality of life and well-being of older adults and their caregivers. Thus, it is an emerging challenge to improve the early diagnosis and prognosis of the disease. Detecting hidden patterns in complex multidimensional datasets using recent advancements in machine learning provides a tremendous opportunity to meet this crucial need. In this study, using multimodal features and an individual's clinical status on one or more time points, we aimed to predict the individual's cognitive test scores, changes in Magnetic Resonance Imaging features, and the individual's diagnostic status for the next three years. We presented a novel Encoder-Decoder Long Short-Term Memory deep-learning model architecture for implementing our prediction. We applied it to data from the Alzheimer's Disease Neuroimaging Initiative, comprising longitudinal data of 1737 participants and 12,741 instances. The proposed model was found to be competent, with a validation accuracy of 0.941, a multi-class area under the curve of 0.960, and a test accuracy of 0.88 in identifying the various stages of Alzheimer's disease progression in patients with an initially cognitively normal or mild cognitive impairment which is a significant improvement over previous methods.Clinical relevance- The proposed approach can help improve diagnostic understanding of Alzheimer's Disease progression and assist in the early detection of various stages of Alzheimer's Disease based on clinical heterogeneity.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Doença de Alzheimer/diagnóstico por imagem , Qualidade de Vida , Disfunção Cognitiva/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...