Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biomaterials ; 278: 121137, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34560422

RESUMO

M2-polarized, pro-tumoral tumor-associated macrophages (TAMs) express the interleukin-4 receptor (IL4R) at higher levels compared with M1-polarized, anti-tumoral macrophages. In this study, we harnessed M1 macrophage-derived exosomes engineered to foster M1 polarization and target IL4R for the inhibition of tumor growth by reprogramming TAMs into M1-like macrophages. M1 exosomes were transfected with NF-κB p50 siRNA and miR-511-3p to enhance M1 polarization and were surface-modified with IL4RPep-1, an IL4R-binding peptide, to target the IL4 receptor of TAMs (named IL4R-Exo(si/mi). IL4R-Exo(si/mi) were internalized and downregulated target gens in M2 macrophages and decreased M2 markers, while increasing M1 markers, more efficiently compared with untargeted and control peptide-labeled exosomes and exosomes from non-immune, normal cells. Whole-body fluorescence imaging showed that IL4R-Exo(si/mi) homed to tumors at higher levels compared with the liver, unlike untargeted and control peptide-labeled exosomes. Systemic administration of IL4R-Exo(si/mi) inhibited tumor growth, downregulated target genes, and decreased the levels of M2 cytokines and immune-suppressive cells, while increasing the levels of M1 cytokines and immune-stimulatory cells, more efficiently than untargeted and control peptide-labeled exosomes. These results suggest that IL4R-Exo(si/mi) inhibits tumor growth by reprogramming TAMs into M1-like macrophages and increasing anti-tumor immunity, thus representing a novel cancer immunotherapy.


Assuntos
Exossomos , Macrófagos , Neoplasias , Reprogramação Celular , Humanos , Subunidade alfa de Receptor de Interleucina-4 , Neoplasias/terapia , Receptores de Interleucina-4 , Macrófagos Associados a Tumor
2.
Biomaterials ; 247: 119984, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32278214

RESUMO

Blockade of programmed cell death ligand-1 (PD-L1) restores T-cell activity and enhances anti-tumor immunity. Screening a phage-displayed peptide library for peptides that selectively bind to PD-L1-overexpressing cells identified two peptides, CLQKTPKQC and CVRARTR (PD-L1Pep-1 and PD-L1Pep-2, respectively) that appeared to block PD-L1. PD-L1Pep-1 and PD-L1Pep-2 preferentially bound to high PD-L1-expressing cells over low PD-L1-expressing cells; binding was further enhanced by interferon-γ, an inducer of PD-L1 expression. Binding affinities of PD-L1Pep-1 and PD-L1Pep-2 were approximately 373 and 281 nM, respectively. Cellular binding of the PD-L1-binding peptides was reduced by silencing PD-L1 gene expression or competition with anti-PD-L1 antibody. PD-L1Pep-1 and PD-L1Pep-2 induced the internalization and downregulated cell surface levels of PD-L1. The PD-L1-binding peptides restored cytokine secretion and T-cell proliferation to cells inhibited by co-culture with tumor cells or culture on PD-L1-coated plates. Intravenously injected PD-L1Pep-1 and PD-L1Pep-2 efficiently homed to tumor tissues, inhibited tumor growth, and increased CD8+/FoxP3+ ratio in mice. The PD-L1-binding peptides in combination with doxorubicin or PD-L1-targeted liposomal doxorubicin inhibited tumor growth and increased CD8+/FoxP3+ ratio more efficiently than doxorubicin alone and untargeted liposomal doxorubicin, respectively. These results suggest that PD-L1Pep-1 and PD-L1Pep-2 block PD-L1 and reinvigorate T-cell activity, inhibiting tumor growth by enhancing anti-tumor immunity.


Assuntos
Antígeno B7-H1 , Bacteriófagos , Animais , Linhagem Celular Tumoral , Camundongos , Peptídeos , Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...