Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clean Prod ; 435: 140240, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38268972

RESUMO

Crop residue burning is a common practice in many parts of the world that causes air pollution and greenhouse gas (GHG) emissions. Regenerative practices that return residues to the soil offer a 'no burn' pathway for addressing air pollution while building soil organic carbon (SOC). Nevertheless, GHG emissions in rice-based agricultural systems are complex and difficult to anticipate, particularly in production contexts with highly variable hydrologic conditions. Here we predict long-term net GHG fluxes for four rice residue management strategies in the context of rice-wheat cropping systems in Eastern India: burning, soil incorporation, livestock fodder, and biochar. Estimations were based on a combination of Tier 1, 2, and 3 modelling approaches, including 100-year DNDC simulations across three representative soil hydrologic categories (i.e., dry, median, and wet). Overall, residue burning resulted in total direct GHG fluxes of 2.5, 6.1, and 8.7 Mg CO2-e in the dry, median, and wet hydrologic categories, respectively. Relative to emissions from burning (positive values indicate an increase) for the same dry to wet hydrologic categories, soil incorporation resulted in a -0.2, 1.8, or 3.1 Mg CO2-e change in emissions whereas use of residues for livestock fodder increased emissions by 2.0, 2.1, or 2.3 Mg CO2-e. Biochar reduced emissions relative to burning by 2.9 Mg CO2-e in all hydrologic categories. This study showed that the production environment has a controlling effect on methane and, therefore, net GHG balance. For example, wetter sites had 2.8-4.0 times greater CH4 emissions, on average, than dry sites when rice residues were returned to the soil. To effectively mitigate burning without undermining climate change mitigation goals, our results suggest that geographically-target approaches should be used in the rice-based systems of Eastern India to incentivize the adoption of regenerative 'no burn' residue management practices.

2.
Sci Rep ; 13(1): 11170, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430023

RESUMO

One way to meet growing food demand is to increase yields in regions that have large yield gaps, including smallholder systems. To do this, it is important to quantify yield gaps, their persistence, and their drivers at large spatio-temporal scales. Here we use microsatellite data to map field-level yields from 2014 to 2018 in Bihar, India and use these data to assess the magnitude, persistence, and drivers of yield gaps at the landscape scale. We find that overall yield gaps are large (33% of mean yields), but only 17% of yields are persistent across time. We find that sowing date, plot area, and weather are the factors that most explain variation in yield gaps across our study region, with earlier sowing associated with significantly higher yield values. Simulations suggest that if all farmers were able to adopt ideal management strategies, including earlier sowing and more irrigation use, yield gaps could be closed by up to 42%. These results highlight the ability of micro-satellite data to understand yield gaps and their drivers, and can be used to help identify ways to increase production in smallholder systems across the globe.

3.
Data Brief ; 45: 108625, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36426044

RESUMO

This dataset provides detailed information on rice production practices being applied by farmers during 2018 rainy season in India. Data was collected through computer-assisted personal interview of farmers using the digital platform Open Data Kit (ODK). The dataset, n = 8355, covers eight Indian states, viz., Andhra Pradesh, Bihar, Chhattisgarh, Haryana, Odisha, Punjab, Uttar Pradesh and West Bengal. Sampling frames were constructed separately for each district within states and farmers were selected randomly. The survey was deployed in 49 districts with a maximum of 210 interviews per district. The digital survey form was available on mobile phones of trained enumerators and was designed to minimize data entry errors. Each survey captured approximately 225 variables around rice production practices of farmers' largest plot starting with land preparation, establishment method, crop variety and planting time through to crop yield. Detailed modules captured fertilizer application, irrigation, weed management, biotic and abiotic stresses. Additional information was gathered on household demographics and marketing. Geo-points were recorded for each surveyed plot with an accuracy of <10 m. This dataset is generated to bridge a data-gap in the national system and generates information about the adoption of technologies, as well as enabling prediction and other analytics. It can potentially be the basis for evidence-based agriculture programming by policy makers.

4.
PLoS One ; 17(11): e0277425, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36441682

RESUMO

Remote sensing can be used to map tillage practices at large spatial and temporal scales. However, detecting such management practices in smallholder systems is challenging given that the size of fields is smaller than historical readily-available satellite imagery. In this study we used newer, higher-resolution satellite data from Sentinel-1, Sentinel-2, and Planet to map tillage practices in the Eastern Indo-Gangetic Plains in India. We specifically tested the classification performance of single sensor and multiple sensor random forest models, and the impact of spatial, temporal, or spectral resolution on classification accuracy. We found that when considering a single sensor, the model that used Planet imagery (3 m) had the highest classification accuracy (86.55%) while the model that used Sentinel-1 data (10 m) had the lowest classification accuracy (62.28%). When considering sensor combinations, the model that used data from all three sensors achieved the highest classification accuracy (87.71%), though this model was not statistically different from the Planet only model when considering 95% confidence intervals from bootstrap analyses. We also found that high levels of accuracy could be achieved by only using imagery from the sowing period. Considering the impact of spatial, temporal, and spectral resolution on classification accuracy, we found that improved spatial resolution from Planet contributed the most to improved classification accuracy. Overall, it is possible to use readily-available, high spatial resolution satellite data to map tillage practices of smallholder farms, even in heterogeneous systems with small field sizes.


Assuntos
Imagens, Psicoterapia , Planetas , Fazendas , Índia , Imagens de Satélites
5.
Sci Rep ; 12(1): 3753, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260662

RESUMO

Conservation agriculture (CA), which encompasses minimum soil disturbance, residue retention either through crop residue, or cover crops and crop diversification-based crop management practices can modify the status of pest dynamics and activities under the changing climatic scenarios. CA has been advocated extensively to optimize the use of available resources, maintain the environmental quality, enhance crop productivity, and reduce the climate change impacts. Information related to the impacts of long-term CA-production systems under rice-based cropping systems on pest status is lacking, particularly in middle Indo-Gangetic Plains (MIGP). Under CA, puddling is completely avoided, and rice is directly sown or transplanted to maintain better soil health. Different sets of experimentations including farmers practice, partial CA and full CA (CA) as treatments in rice-based cropping systems, were established from 2009, 2015 and 2016 to understand the long-term impacts of CA on pest dynamics. In this study, direct and indirect effects of tillage (zero, reduced and conventional tillage), residue retention and cropping sequences on abundance and damage by pests were investigated. After 4-5 years of experimentation, populations of oriental armyworm [Mythinma (Leucania) (Pseudaletia) separata (Wlk.)] in wheat, mealybug [Brevennia rehi (Lindinger)] and bandicoot rat [Bandicota bengalensis (Gray)] in rice were found to increase abnormally in CA-based production systems. Conventionally tilled plots had a significant negative effect while residue load in zero-tilled plots had a significant positive effect on larval population build-up of M. separata. Zero tillage had a higher infestation of mealybug (52-91% infested hills) that used grassy weeds (Echinochloa colona, Echinochloa crusgalli, Cynodon dactylon, Leptochloa chinensis and Panicum repense) as alternate hosts. Cropping sequences and no disturbance of soil and grassy weeds had higher live burrow counts (4.2 and 13.7 burrows as compared to 1.47 and 7.53 burrows per 62.5 m2 during 2019-2020 and 2020-2021, respectively) and damaged tillers (3.4%) in CA-based practices. Based on the present study, pest management strategies in CA need to be revisited with respect to tillage, residue retention on soil surface, grassy weeds in field and cropping sequences to deliver the full benefits of CA in MIGP to achieve the sustainable development goals under the climate change scenarios.


Assuntos
Oryza , Agricultura/métodos , Ásia , Produtos Agrícolas , Solo/química
6.
Weed Res ; 61(6): 475-485, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35874455

RESUMO

Zero tillage (ZT) is widely promoted throughout India's Eastern Indo-Gangetic Plains (IGP) because of its potential to increase wheat productivity and resilience to abiotic stresses. Weeds remain a major barrier to ZT adoption, yet it remains unclear how ZT will influence weed communities in the Eastern-IGP. The primary objective of this study was to characterise the composition of the germinable weed seedbank sampled just prior to the wheat phase of rice-wheat farms in Bihar and Eastern Uttar Pradesh, and examine whether adoption of ZT wheat has shifted weed community composition compared to conventional tillage (CT). Additionally, we examined whether edaphic properties and topography (upland vs. lowland) explain variation in germinable weed seedbank communities. In December 2014, we evaluated the germinable seedbank from 72 fields differing in their historic (>=3 year) tillage practices (ZT vs. CT) in three regions: Samastipur-Vaishali-Muzaffarpur (SVM), Ara-Buxar and Maharajgunj-Kushinagar. Weed community composition and species richness varied by region and topography. ZT adoption was associated with lower relative density of Chenopodium album in the germinable seedbank and lower emergence of Phalaris minor seedlings within farmers' fields. In upland topographies of the SVM region, ZT adoption was also associated with greater relative abundance of Solanum nigrum in the weed seedbank. However, differences between tillage systems in individual species were not large enough to result in detection of differences at the whole-community level. Variation in edaphic properties, most notably soil texture and pH, explained 51% of the variation in the weed seedbank community. Our work suggests several frequent but poorly understood species (e.g. Mazus pumilus and Grangea maderaspatana) in Eastern IGP for which future research should quantify their effects on crop yields. Finally, future work surveying weed species abundance at harvest could further determine the dominant problematic species in these regions.

7.
Geoderma ; 340: 104-114, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30996398

RESUMO

Tillage intensive cropping practices have deteriorated soil physical quality and decreased soil organic carbon (SOC) levels in rice-growing areas of South Asia. Consequently, crop productivity has declined over the years demonstrating the need for sustainable alternatives. Given that, a field experiment was conducted for six years to assess the impact of four tillage based crop establishment treatments [puddled transplant rice followed by conventional tillage in wheat/maize (CTTPR-CT), non-puddled transplant rice followed by zero-tillage in wheat/maize (NPTPR-ZT), zero-till transplant rice followed by zero-tillage in wheat/maize (ZTTPR-ZT), zero-tillage direct seeded rice followed by zero-tillage in wheat/maize (ZTDSR-ZT)], two residue management treatments [residue removal, residue retention (~33%)], and two cropping systems [rice-wheat, rice-maize] on soil aggregation, carbon pools, nutrient availability, and crop productivity. After six years of rotation, in top 0.2 m soil depth, zero-till crop establishment treatments (ZTTPR-ZT and ZTDSR-ZT) had higher (p < 0.05) total organic carbon (TOC) over conventional tillage treatment (CTTPR-CT). Zero-till crop establishment treatments increased very-labile C faction (Cfrac 1) by 21% followed by labile fraction (Cfrac 2) (16%), non-labile fraction (Cfrac 4) (13%) and less-labile fraction (Cfrac 3) (7%). Notably, higher passive C-pool in conservation tillage practices over CTTPR-CT suggests that conservation tillage could stabilize the recalcitrant form of carbon that persists longer in the soil. Meantime, zero-till crop establishment treatments had higher (p < 0.05) water stable macro-aggregates, macro-aggregates: micro-aggregates ratio and aggregate carbon content over CTTPR-CT. The treatment NPTPR-ZT significantly increased soil quality parameters over CTTPR-CT. However, the effect was not as prominent as that of ZTTPR-ZT and ZTDSR-ZT. Retention of crop residue increased (p < 0.05) TOC (12%) and soil available nutrients mainly available-P (16%), followed by available-K (12%), DTPA-extractable Zn (11%), and available-S (6%) over residue removal treatment. The constructive changes in soil properties following conservation tillage and crop residue retention led to increased crop productivity over conventional CTTPR-CT. Therefore, conservation tillage (particularly ZTTPR-ZT and ZTDSR-ZT) and crop residue retention could be recommended in tropical rice-based cropping systems for improving soil quality and production sustainability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...