Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 19267, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33159103

RESUMO

In the western Indo-Gangetic plains, issues of deterioration in soil, water, and environment quality coupled with low profitability jeopardize the sustainability of the dominant rice-wheat (RW) system. To address these issues, crop diversification and conservation agriculture (CA)-based management hold considerable promise but the adoption of both approaches has been low, and additional evidence generation from a multi-criteria productivity and sustainability perspective is likely required to help drive the change. Compared to prevailing farmers' practice (FP), results suggest that CA-based rice management increased profitability by 13% and energy use efficiency (EUE) by 21% while reducing irrigation by 19% and global warming potential (GWP) by 28%. By substituting CA-based maize for rice, similar mean profitability gains were realized (16%) but transformative improvements in irrigation (- 84%), EUE (+ 231%), and GWP (- 95%) were observed compared to FP. Inclusion of mungbean in the rotation (i.e. maize-wheat-mungbean) with CA-based management increased the system productivity, profitability, and EUE by 11, 25 and 103%, respectively while decreasing irrigation water use by 64% and GWP by 106% compared to FP. Despite considerable benefits from the CA-based maize-wheat system, adoption of maize is not widespread due to uneven market demand and assured price guarantees for rice.

2.
Environ Manage ; 65(6): 774-786, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32133539

RESUMO

In the Indo-Gangetic Plains of South Asia, the quadruple challenges of deteriorating soil quality, declining groundwater, energy shortages, and diminishing farm profitability threaten sustainability of conventional till (CT)-based cereal production systems. A 5-year study was conducted to evaluate the effect of conservation agriculture (CA)-based management (tillage, crop establishment, residue management, and system intensification through mungbean integration) on energy budget, water productivity, and economic profitability in cereal (rice-wheat, RW/maize-wheat, MW)-based systems compared with CT-based management. In CA systems, crop residues contributed the maximum (~76%) in total energy input (167,995 MJ ha-1); however, fertilizer application (nonrenewable energy source) contributed the maximum (43%) in total energy input (47,760 MJ ha-1) in CT-based systems. CA-based cereal (rice/maize) systems recorded higher net energy and energy-intensiveness (EI) levels of 251% and 300%, respectively, compared with those of the CT-based rice-wheat system (RW/CT) (295,217 MJ ha-1 and 46.05 MJ USD-1), irrespective of mungbean integration. MWMb/ZT+R utilized 204% more input energy, which resulted in 14% higher net energy and 229% higher EI compared with RW/CT. CA-based RW and MW systems enhanced the crop productivity by 10 and 16%, water productivity by 56 and 33%, and profitability by 34 and 36%, while saving in irrigation water by 38 and 32%, compared with their respective CT-based systems, respectively. CA-based system improved net energy, crop productivity, and profitability; therefore, it should be outscaled to improve the soil and environmental quality in north-west India.


Assuntos
Agricultura , Grão Comestível , Ásia , Fazendas , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...