Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Electromagn Biol Med ; 43(1-2): 81-94, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38461438

RESUMO

This research focuses on improving the detection and classification of brain tumors using a method called Brain Tumor Classification using Dual-Discriminator Conditional Generative Adversarial Network (DDCGAN) for MRI images. The proposed system is implemented in the MATLAB programming language. In this study, images of the brain are taken from a dataset and processed to remove noise and enhance image quality. The brain pictures are taken from Brats MRI image dataset. The images are preprocessed using Structural interval gradient filtering to remove noises and improve the quality of the image. The preprocessing outcomes are given to feature extraction. The features are extracted by Empirical wavelet transform (EWT) and the extracted features are given to the Dual-discriminator conditional generative adversarial network (DDCGAN) for recognizing the brain tumor, which classifies the brain images into glioma, meningioma, pituitary gland, and normal. Then, the weight parameter of DDCGAN is optimized by utilizing Border Collie Optimization (BCO), which is a met a heuristic approach to handle the real world optimization issues. It maximizes the detection accurateness and reduced computational time. Implemented in MATLAB, the experimental results demonstrate that the proposed system achieves a high sensitivity of 99.58%. The BCO-DDCGAN-MRI-BTC method outperforms existing techniques in terms of precision and sensitivity when compared to methods like Kernel Basis SVM (KSVM-HHO-BTC), Joint Training of Two-Channel Deep Neural Network (JT-TCDNN-BTC), and YOLOv2 including Convolutional Neural Network (YOLOv2-CNN-BTC). The research findings indicate that the proposed method enhances the accuracy of brain tumor classification while reducing computational time and errors.


This research focuses on improving the detection and classification of brain tumors using a method called Brain Tumor Classification using Dual-Discriminator Conditional Generative Adversarial Network (DDCGAN) for MRI images. Brain tumors can significantly impact normal brain function and lead to loss of lives, making timely diagnosis crucial. However, the process of locating affected brain cells is often time-consuming. In this study, images of the brain are taken from a dataset and processed to remove noise and enhance image quality. The proposed method employs the Empirical Wavelet Transform (EWT) for feature extraction and utilizes the DDCGAN to classify brain images into different types of tumors (glioma, meningioma, pituitary gland) and normal brain images. The weight parameter of DDCGAN is optimized using Border Collie Optimization (BCO), a method to handle real-world optimization issues. This optimization aims to maximize detection accuracy and minimize computational time. Implemented in MATLAB, the experimental results demonstrate that the proposed system achieves a high sensitivity of 99.58%. The BCO-DDCGAN-MRI-BTC method outperforms existing techniques in terms of precision and sensitivity when compared to methods like Kernel Basis SVM (KSVM-HHO-BTC), Joint Training of Two-Channel Deep Neural Network (JT-TCDNN-BTC), and YOLOv2 including Convolutional Neural Network (YOLOv2-CNN-BTC). The research findings indicate that the proposed method enhances the accuracy of brain tumor classification while reducing computational time and errors.


Assuntos
Neoplasias Encefálicas , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/patologia , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Análise de Ondaletas
2.
J Xray Sci Technol ; 31(4): 777-796, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37182861

RESUMO

BACKGROUND: Hyperspectral brain tissue imaging has been recently utilized in medical research aiming to study brain science and obtain various biological phenomena of the different tissue types. However, processing high-dimensional data of hyperspectral images (HSI) is challenging due to the minimum availability of training samples. OBJECTIVE: To overcome this challenge, this study proposes applying a 3D-CNN (convolution neural network) model to process spatial and temporal features and thus improve performance of tumor image classification. METHODS: A 3D-CNN model is implemented as a testing method for dealing with high-dimensional problems. The HSI pre-processing is accomplished using distinct approaches such as hyperspectral cube creation, calibration, spectral correction, and normalization. Both spectral and spatial features are extracted from HSI. The Benchmark Vivo human brain HSI dataset is used to validate the performance of the proposed classification model. RESULTS: The proposed 3D-CNN model achieves a higher accuracy of 97% for brain tissue classification, whereas the existing linear conventional support vector machine (SVM) and 2D-CNN model yield 95% and 96% classification accuracy, respectively. Moreover, the maximum F1-score obtained by the proposed 3D-CNN model is 97.3%, which is 2.5% and 11.0% higher than the F1-scores obtained by 2D-CNN model and SVM model, respectively. CONCLUSION: A 3D-CNN model is developed for brain tissue classification by using HIS dataset. The study results demonstrate the advantages of using the new 3D-CNN model, which can achieve higher brain tissue classification accuracy than conventional 2D-CNN model and SVM model.


Assuntos
Encéfalo , Redes Neurais de Computação , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...