Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 104: 108452, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34996010

RESUMO

Sepsis is a serious and menacing organ dysfunction that occur due to dysregulated response of the host towards the infection. This organ dysfunction may lead to sepsis with intense cellular, metabolic and circulatory dysregulation, multiple organ failure and high mortality. Lymphopenia is observed in two-third of sepsis patients and a significant depletion of lymphocytes occurs in non-survivors compared to sepsis survivors. Myeloid derived suppressor cells (MDSCs) gave new insights into sepsis-associated lymphopenia. If MDSC expansion and its tissue-infiltration persist, it can induce significant pathophysiology including lymphopenia, host immunosuppression and immune-paralysis that contributes to worsened patient outcomes. This review focuses on MDSCs and its subsets, the role of MDSCs in infection, sepsis and septic shock.


Assuntos
Células Supressoras Mieloides/imunologia , Sepse/imunologia , Animais , Humanos
2.
Colloids Surf B Biointerfaces ; 207: 111991, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34333302

RESUMO

Induced pluripotent stem cells (iPSCs) can be used to generate desired types of cells that belong to the three germ layers (i.e., ectoderm, endoderm and mesoderm). These cells possess great potential in regenerative medicine. Before iPSCs are used in various biomedical applications, the existing xenogeneic culture methods must be improved to meet the technical standards of safety, cost effectiveness, and ease of handling. In addition to commonly used 2D substrates, a culture system that mimics the native cellular environment in tissues will be a good choice when culturing iPS cells and differentiating them into different lineages. Hydrogels are potential candidates that recapitulate the native complex three-dimensional microenvironment. They possess mechanical properties similar to those of many soft tissues. Moreover, hydrogels support iPSC adhesion, proliferation and differentiation to various cell types. They are xeno-free and cost-effective. In addition to other substrates, such as mouse embryonic fibroblast (MEF), Matrigel, and vitronectin, the use of hydrogel-based substrates for iPSC culture and differentiation may help generate large numbers of clinical-grade cells that can be used in potential clinical applications. This review mainly focuses on the use of hydrogels for the culture and differentiation of iPSCs into various cell types and their potential applications in regenerative medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Diferenciação Celular , Fibroblastos , Hidrogéis , Camundongos
3.
Colloids Surf B Biointerfaces ; 198: 111466, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33243549

RESUMO

Differentiation of hepatocyte-like cells (HLCs) from human induced pluripotent stem cells (iPSCs) in vitro has great potential in regenerative medicine. Current protocol uses matrigel of animal origin as a substrate for the differentiation of iPSCs to HLCs. Use of an appropriate non-xenogenic substrate is very important for potential future clinical applications. Towards this goal, we used Cellulose Nanofibril (CNF) gel, a natural, non-toxic, biocompatible and biodegradable polymer in humans as a thin film substrate for the differentiation of iPSCs to HLCs. Here we demonstrated that CNF as a substrate film can efficiently differentiate human iPSCs to HLCs. We investigated the expression profile of the endoderm markers (SOX17 and CXCR4), hepatoblast markers (EpCAM and AFP) and mature hepatocyte marker (ASGPR1) by flow cytometry during the differentiation of iPSCs to HLCs on both CNF and matrigel substrates. We also tested the HLCs generated from both the substrates for the expression of hepatic markers such as A1AT, HNF4A, CYP450 isotypes by Real Time-PCR and its mature hepatocyte functions (lipid accumulation and albumin expression). Our results showed that the differentiated HLCs from both the substrates are comparable and expressed stage specific hepatocyte markers as well as functional maturity. We have demonstrated that CNF, a natural biomaterial, may be used in tissue engineering applications as a potential substrate for the differentiation of iPSCs to HLCs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Diferenciação Celular , Linhagem Celular , Celulose , Hepatócitos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...