Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mucosal Immunol ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945396

RESUMO

Intestinal stromal cells (SCs), which synthesize the extracellular matrix that gives the mucosa its structure, are newly appreciated to play a role in mucosal inflammation. Here we show that human intestinal vimentin+CD90+SMA- SCs synthesize retinoic acid (RA) at levels equivalent to intestinal epithelial cells, a function in the human intestine previously attributed exclusively to epithelial cells. Crohn's disease SCs (Crohn's SCs), however, synthesized markedly less RA than SCs from healthy intestine (Normal SCs). We also show that microbe-stimulated Crohn's SCs, which are more inflammatory than stimulated Normal SCs, induced less RA-regulated differentiation of mucosal DCS (circulating pre-DCs and monocyte-derived DCs), leading to the generation of more potent inflammatory IFN-γhi/IL-17hi T cells than Normal SCs. Explaining these results, Crohn's SCs expressed more DHRS3, a retinaldehyde reductase that inhibits retinol conversion to retinal, and thus synthesized less RA than Normal SCs. These findings uncover a microbe-SC-DC crosstalk in which luminal microbes induce Crohn's disease SCs to initiate and perpetuate inflammation through impaired synthesis of RA.

2.
bioRxiv ; 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37546752

RESUMO

Neuroimaging is commonly used to infer human brain connectivity, but those measurements are far-removed from the molecular underpinnings at synapses. To uncover the molecular basis of human brain connectivity, we analyzed a unique cohort of 98 individuals who provided neuroimaging and genetic data contemporaneous with dendritic spine morphometric, proteomic, and gene expression data from the superior frontal and inferior temporal gyri. Through cellular contextualization of the molecular data with dendritic spine morphology, we identified hundreds of proteins related to synapses, energy metabolism, and RNA processing that explain between-individual differences in functional connectivity and structural covariation. By integrating data at the genetic, molecular, subcellular, and tissue levels, we bridged the divergent fields of molecular biology and neuroimaging to identify a molecular basis of brain connectivity. One-Sentence Summary: Dendritic spine morphometry and synaptic proteins unite the divergent fields of molecular biology and neuroimaging.

3.
Neuroscience ; 455: 195-211, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33346120

RESUMO

Synapse or dendritic spine loss is the strongest correlate of cognitive decline in Alzheimer's disease (AD), and neurofibrillary tangles (NFTs), but not amyloid-ß plaques, associate more closely with transition to mild cognitive impairment. Yet, how dendritic spine architecture is affected by hyperphosphorylated tau is still an ongoing question. To address this, we combined cell and biochemical analyses of the Tau P301S mouse line (PS19). Individual pyramidal neurons in the hippocampus and medial prefrontal cortex (mPFC) were targeted for iontophoretic microinjection of fluorescent dye, followed by high-resolution confocal microscopy and 3D morphometry analysis. In the hippocampus, PS19 mice and non-transgenic (NTG) littermates displayed equivalent spine density at 6 and 9 months, but both genotypes exhibited age-related thin spine loss. PS19 mice exhibited significant increases in synaptic tau protein levels and mean dendritic spine head diameter with age. This suggests that CA1 pyramidal neurons in PS19 mice may undergo spine remodeling in response to tau accumulation and age. In the mPFC, spine density was similar among PS19 mice and NTG littermates at 6 and 9 months, but age-related reductions in synaptic tau levels were observed among PS19 mice. Collectively, these studies reveal brain region-specific changes in dendritic spine density and morphology in response to age and the presence of hyperphosphorylated tau in the PS19 mouse line.


Assuntos
Doença de Alzheimer , Espinhas Dendríticas , Tauopatias , Proteínas tau , Animais , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas tau/genética , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...