Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36769908

RESUMO

This work was devoted to the first multi-parametric unitary comparative analysis of a selection of sintered piezoceramic materials synthesised by solid-state reactions, aiming to delineate the most promising biocompatible piezoelectric material, to be further implemented into macro-porous ceramic scaffolds fabricated by 3D printing technologies. The piezoceramics under scrutiny were: KNbO3, LiNbO3, LiTaO3, BaTiO3, Zr-doped BaTiO3, and the (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 solid solution (BCTZ). The XRD analysis revealed the high crystallinity of all sintered ceramics, while the best densification was achieved for the BaTiO3-based materials via conventional sintering. Conjunctively, BCTZ yielded the best combination of functional properties-piezoelectric response (in terms of longitudinal piezoelectric constant and planar electromechanical coupling factor) and mechanical and in vitro osteoblast cell compatibility. The selected piezoceramic was further used as a base material for the robocasting fabrication of 3D macro-porous scaffolds (porosity of ~50%), which yielded a promising compressive strength of ~20 MPa (higher than that of trabecular bone), excellent cell colonization capability, and noteworthy cytocompatibility in osteoblast cell cultures, analogous to the biological control. Thereby, good prospects for the possible development of a new generation of synthetic bone graft substitutes endowed with the piezoelectric effect as a stimulus for the enhancement of osteogenic capacity were settled.

2.
J Funct Biomater ; 13(3)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36135559

RESUMO

Bi-phasic calcium phosphates (BCPs) are considered prominent candidate materials for the fabrication of bone graft substitutes. Currently, supplemental cation-doping is suggested as a powerful path to boost biofunctionality, however, there is still a lack of knowledge on the structural role of such substituents in BCPs, which in turn, could influence the intensity and extent of the biological effects. In this work, pure and Mg- and Sr-doped BCP scaffolds were fabricated by robocasting from hydrothermally synthesized powders, and then preliminarily tested in vitro and thoroughly investigated physically and chemically. Collectively, the osteoblast cell culture assays indicated that all types of BCP scaffolds (pure, Sr- or Sr-Mg-doped) delivered in vitro performances similar to the biological control, with emphasis on the Sr-Mg-doped ones. An important result was that double Mg-Sr doping obtained the ceramic with the highest ß-tricalcium phosphate (ß-TCP)/hydroxyapatite mass concentration ratio of ~1.8. Remarkably, Mg and Sr were found to be predominantly incorporated in the ß-TCP lattice. These findings could be important for the future development of BCP-based bone graft substitutes since the higher dissolution rate of ß-TCP enables an easier release of the therapeutic ions. This may pave the road toward medical devices with more predictable in vivo performance.

3.
Materials (Basel) ; 14(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34300727

RESUMO

Cation-substituted hydroxyapatite (HA), standalone or as a composite (blended with polymers or metals), is currently regarded as a noteworthy candidate material for bone repair/regeneration either in the form of powders, porous scaffolds or coatings for endo-osseous dental and orthopaedic implants. As a response to the numerous contradictions reported in literature, this work presents, in one study, the physico-chemical properties and the cytocompatibility response of single cation-doped (Ce, Mg, Sr or Zn) HA nanopowders in a wide concentration range (0.5-5 at.%). The modification of composition, morphology, and structure was multiparametrically monitored via energy dispersive X-ray, X-ray photoelectron, Fourier-transform infrared and micro-Raman spectroscopy methods, as well as by transmission electron microscopy and X-ray diffraction. From a compositional point of view, Ce and Sr were well-incorporated in HA, while slight and pronounced deviations were observed for Mg and Zn, respectively. The change of the lattice parameters, crystallite size, and substituting cation occupation factors either in the Ca(I) or Ca(II) sites were further determined. Sr produced the most important HA structural changes. The in vitro biological performance was evaluated by the (i) determination of leached therapeutic cations (by inductively coupled plasma mass spectrometry) and (ii) assessment of cell behaviour by both conventional assays (e.g., proliferation-3-(4,5-dimethyl thiazol-2-yl) 5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay; cytotoxicity-lactate dehydrogenase release assay) and, for the first time, real-time cell analysis (RTCA). Three cell lines were employed: fibroblast, osteoblast, and endothelial. When monophasic, the substituted HA supported the cells' viability and proliferation without signs of toxicity. The RTCA results indicate the excellent adherence of cells. The study strived to offer a perspective on the behaviour of Ce-, Mg-, Sr-, or Zn-substituted HAs and to deliver a well-encompassing viewpoint on their effects. This can be highly important for the future development of such bioceramics, paving the road toward the identification of candidates with highly promising therapeutic effects.

4.
Materials (Basel) ; 12(22)2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31717621

RESUMO

Recently, a large spectrum of biomaterials emerged, with emphasis on various pure, blended, or doped calcium phosphates (CaPs). Although basic cytocompatibility testing protocols are referred by International Organization for Standardization (ISO) 10993 (parts 1-22), rigorous in vitro testing using cutting-edge technologies should be carried out in order to fully understand the behavior of various biomaterials (whether in bulk or low-dimensional object form) and to better gauge their outcome when implanted. In this review, current molecular techniques are assessed for the in-depth characterization of angiogenic potential, osteogenic capability, and the modulation of oxidative stress and inflammation properties of CaPs and their cation- and/or anion-substituted derivatives. Using such techniques, mechanisms of action of these compounds can be deciphered, highlighting the signaling pathway activation, cross-talk, and modulation by microRNA expression, which in turn can safely pave the road toward a better filtering of the truly functional, application-ready innovative therapeutic bioceramic-based solutions.

5.
Oncol Lett ; 17(5): 4133-4138, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30944606

RESUMO

Acanthosis nigricans (AN), a skin disorder with high prevalence, represents a dermatological condition with esthetic implications, but otherwise mild symptoms. For any clinician, it is in fact the tip of the iceberg, leading him/her to investigate what lies beneath the surface, since AN points to a systemic problem or disease: metabolic disorder (most frequently), endocrine syndrome, medication side effects, malignancy, and genetic factors. Sometimes, it is the first observed sign of a malignancy or of diabetes mellitus, especially in patients with chronic metabolic disorder; therefore, it is not to be taken lightly. The present review summarizes the information in literature regarding the etiopathogenesis of AN. We propose a new classification that aims to better organize the different types of AN, with implications on the extent and urgency of the investigation plan, as well as various therapeutic algorithms. Therapy options are also presented, both systemic treatments that target the underlying disease, and local ones for esthetic reasons.

6.
Materials (Basel) ; 11(11)2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30355975

RESUMO

High-performance bioceramics are required for preventing failure and prolonging the life-time of bone grafting scaffolds and osseous implants. The proper identification and development of materials with extended functionalities addressing socio-economic needs and health problems constitute important and critical steps at the heart of clinical research. Recent findings in the realm of ion-substituted hydroxyapatite (HA) could pave the road towards significant developments in biomedicine, with an emphasis on a new generation of orthopaedic and dentistry applications, since such bioceramics are able to mimic the structural, compositional and mechanical properties of the bone mineral phase. In fact, the fascinating ability of the HA crystalline lattice to allow for the substitution of calcium ions with a plethora of cationic species has been widely explored in the recent period, with consequent modifications of its physical and chemical features, as well as its functional mechanical and in vitro and in vivo biological performance. A comprehensive inventory of the progresses achieved so far is both opportune and of paramount importance, in order to not only gather and summarize information, but to also allow fellow researchers to compare with ease and filter the best solutions for the cation substitution of HA-based materials and enable the development of multi-functional biomedical designs. The review surveys preparation and synthesis methods, pinpoints all the explored cation dopants, and discloses the full application range of substituted HA. Special attention is dedicated to the antimicrobial efficiency spectrum and cytotoxic trade-off concentration values for various cell lines, highlighting new prophylactic routes for the prevention of implant failure. Importantly, the current in vitro biological tests (widely employed to unveil the biological performance of HA-based materials), and their ability to mimic the in vivo biological interactions, are also critically assessed. Future perspectives are discussed, and a series of recommendations are underlined.

7.
Nanomaterials (Basel) ; 7(11)2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29149061

RESUMO

Aluminum Nitride (AlN) has been long time being regarded as highly interesting material for developing sensing applications (including biosensors and implantable sensors). AlN, due to its appealing electronic properties, is envisaged lately to serve as a multi-functional biosensing platform. Although generally exploited for its intrinsic piezoelectricity, its surface morphology and mechanical performance (elastic modulus, hardness, wear, scratch and tensile resistance to delamination, adherence to the substrate), corrosion resistance and cytocompatibility are also essential features for high performance sustainable biosensor devices. However, information about AlN suitability for such applications is rather scarce or at best scattered and incomplete. Here, we aim to deliver a comprehensive evaluation of the morpho-structural, compositional, mechanical, electrochemical and biological properties of reactive radio-frequency magnetron sputtered AlN nanostructured thin films with various degrees of c-axis texturing, deposited at a low temperature (~50 °C) on Si (100) substrates. The inter-conditionality elicited between the base pressure level attained in the reactor chamber and crystalline quality of AlN films is highlighted. The potential suitability of nanostructured AlN (in form of thin films) for the realization of various type of sensors (with emphasis on bio-sensors) is thoroughly probed, thus unveiling its advantages and limitations, as well as suggesting paths to safely exploit the remarkable prospects of this type of materials.

8.
Future Oncol ; 11(3): 511-24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25241806

RESUMO

An important goal of oncology is the development of cancer risk-identifier biomarkers that aid early detection and target therapy. High-throughput profiling represents a major concern for cancer research, including brain tumors. A promising approach for efficacious monitoring of disease progression and therapy could be circulating biomarker panels using molecular proteomic patterns. Tailoring treatment by targeting specific protein-protein interactions and signaling networks, microRNA and cancer stem cell signaling in accordance with tumor phenotype or patient clustering based on biomarker panels represents the future of personalized medicine for brain tumors. Gathering current data regarding biomarker candidates, we address the major challenges surrounding the biomarker field of this devastating tumor type, exploring potential perspectives for the development of more effective predictive biomarker panels.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/tratamento farmacológico , Terapia de Alvo Molecular , Biomarcadores/sangue , Biomarcadores/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Humanos , MicroRNAs/sangue , MicroRNAs/genética , Células Neoplásicas Circulantes/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Proteoma , Proteômica , Transdução de Sinais/efeitos dos fármacos
9.
Onco Targets Ther ; 6: 1737-49, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24348050

RESUMO

PURPOSE: The expression of an array of signaling molecules, along with the assessment of real-time cell proliferation, has been performed in U87 glioma cell line and in patients' glioblastoma established cell cultures in order to provide a better understanding of cellular and molecular events involved in glioblastoma pathogenesis. Experimental therapy was performed using a phosphatidylinositol-3'-kinase (PI3K) inhibitor. PATIENTS AND METHODS: xMAP technology was employed to assess expression levels of several signal transduction molecules and real-time xCELLigence platform for cell behavior. RESULTS: PI3K inhibition induced the most significant effects on global signaling pathways in patient-derived cell cultures, especially on members of the mitogen-activated protein-kinase family, P70S6 serine-threonine kinase, and cAMP response element-binding protein expression and further prevented tumor cell proliferation. CONCLUSION: The PI3K pathway might be a prime target for glioblastoma treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...