Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955381

RESUMO

This paper presents the usage of spark plasma sintering (SPS) as a method to obtain aluminum-expanded perlite syntactic foams with high porosity. In the test samples, fine aluminum powder with flaky shape particles was used as matrix material and natural, inorganic, granular, expanded perlite was used as a space holder to ensure high porosity (35−57%) and uniform structure. SPS was used to consolidate the specimens. The structures were characterized by scanning electron microscopy and compression tests. Energy absorption (W~7.49 MJ/m3) and energy absorption efficiency (EW < 90%) were also determined.

2.
Materials (Basel) ; 15(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35591388

RESUMO

This study presents the correct processing of Co-Cr alloys as a method of preserving the properties of the materials as-cast, and therefore they can be safely placed in contact with the oral cavity tissues as resistance frameworks. The basic materials analyzed in this study were five commercial Co-Cr dental alloys with different components obtained in three processing steps. The analysis of the electrochemical behavior at the surface of the Co-Cr alloys was performed by electrochemical measurements: impedance spectroscopy (EIS), open circuit electrical potential (OCP), and linear polarization (LP). In terms of validation, all five alloys had a tendency to generate a stable oxide layer at the surface. After the measurements and the graphical representation, the alloy that had a higher percentage of tungsten (W) and iron (Fe) in composition showed a higher tendency of anodizing. After the application of the heat treatment, the disappearance of the hexagonal phase was observed, with the appearance of new phases of type (A,B)2O3 corresponding to some oxide compounds, such as Fe2O3, Cr2O3, (Cr,Fe)2O3, and CoMnO3. In conclusion, the processing of Co-Cr alloys by melting and casting in refractory molds remains a viable method that can support innovation, in the context of technology advance in recent years towards digitalization of the manufacturing process, i.e., the construction of prosthetic frameworks conducted by additive methods using Co-Cr powder alloy.

3.
Materials (Basel) ; 14(3)2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33498642

RESUMO

Cobalt-chromium (Co-Cr) alloys are the most widely used materials for removable and fixed dental prosthetic frameworks. The fitting accuracy between these components in dental prosthetic frameworks assembles (DPFAs) is largely influenced by the manufacturing method. This study presents a novel manufacturing method that combined two common techniques for obtaining one single framework: casting of Co-Cr inserts on top of parts previously manufactured by selective laser melting (SLM) of Co-Cr powder (CoM). Horizontal (n = 4) and vertical (n = 3) surfaces were microscopically analyzed (n = 770 count sum). The results revealed a high precision of the process and high fitting accuracy between the hybrid frameworks. The average distance measured between the frameworks in joined position was 41.08 ± 7.56 µm. In conclusion, the manufacturing of Co-Cr alloys DPFA using the CoM method reduced the deformation of hybrid frameworks and improved the joining accuracy between them.

4.
Int J Nanomedicine ; 14: 5799-5816, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31440048

RESUMO

PURPOSE: Bone consolidation after severe trauma is the most challenging task in orthopedic surgery. This study aimed to develop biomimetic composite for coating Ti implants. Afterwards, these implants were tested in vivo to assess bone consolidation in the absence or the presence of high-frequency pulsed electromagnetic short-waves (HF-PESW). MATERIALS: Biomimetic coating was successfully developed using multi-substituted hydroxyapatite (ms-HAP) functionalized with collagen (ms-HAP/COL), embedded into poly-lactic acid (PLA) matrix (ms-HAP/COL@PLA), and subsequently covered with self-assembled COL layer (ms-HAP/COL@PLA/COL, named HAPc). METHODS: For in vivo evaluation, 32 Wistar albino rats were used in four groups: control group (CG) with Ti implant; PESW group with Ti implant+HF-PESW; HAPc group with Ti implant coated with HAPc; HAPc+PESW group with Ti implant coated with HAPc+HF-PESW. Left femoral diaphysis was fractured and fixed intramedullary. From the first post-operative day, PESW and HAPc+PESW groups underwent HF-PESW stimulation for 14 consecutive days. Biomimetic coating was characterized by XRD, HR-TEM, SEM, EDX and AFM. RESULTS: Osteogenic markers (ALP and osteocalcin) and micro-computed tomography (CT) analysis (especially bone volume/tissue volume ratio results) indicated at 2 weeks the following group order: HAPc+PESW>HAPc≈PESW (P>0.05) and HAPc+PESW>control (P<0.05), indicating the higher values in HAPc+PESW group compared to CG. The fracture-site bone strength showed, at 2 weeks, the highest average value in HAPc+PESW group. Moreover, histological analysis revealed the most abundant COL fibers assembled in dense bundles in HAPc-PESW group. At 8 weeks, micro-CT indicated higher values only in HAPc+PESW group vs CG (P<0.05), and histological results showed a complete-healed fracture in groups: HAPc+PESW, HAPc and PESW, but with more advanced bone remodeling in HAPc+PESW group. CONCLUSION: Using Ti implants coated by HAPc jointly with HF-PESW stimulation positively influenced the bone consolidation process, especially in its early phase, thus potentially providing a superior strategy for clinical applications.


Assuntos
Materiais Biomiméticos/farmacologia , Osso e Ossos/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Fenômenos Eletromagnéticos , Poliésteres/química , Próteses e Implantes , Titânio/farmacologia , Animais , Biomarcadores/sangue , Fenômenos Biomecânicos , Bovinos , Colágeno/farmacologia , Durapatita/farmacologia , Fêmur/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Ratos Wistar , Propriedades de Superfície , Microtomografia por Raio-X
5.
Bosn J Basic Med Sci ; 19(2): 201-209, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30794499

RESUMO

In vitro studies showed that high-frequency pulsed electromagnetic fields (HF-PEMFs) increase the activity/expression of early and late osteogenic markers and enhance bone mineralization. The main aim of this study was to investigate the in vivo effects of HF-PEMFs on fracture healing using a rat model. A femur fracture was established by surgery in 20 male Wistar rats. Titanium nails were implanted to reduce and stabilize the fracture. After surgery, 20 rats were equally divided into untreated control and treated group (from the first postoperative day HF-PEMFs at 400 pulses/sec [pps] were applied for 10 minutes/day, for two weeks). Quantitative and qualitative assessment of bone formation was made at two and eight weeks following surgery and included morphological and histological analysis, serological analysis by ELISA, micro-computed tomography (micro-CT), and three-point bending test. At two weeks in HF-PEMF group, soft callus was at a more advanced fibrocartilaginous stage and the bone volume/total tissue volume (BV/TV) ratio in the callus area was significantly higher compared to control group (p = 0.047). Serum concentration of alkaline phosphatase (ALP) and osteocalcin (OC) was significantly higher in HF-PEMF group (ALP p = 0.026, OC p = 0.006) as well as the mechanical strength of femurs (p = 0.03). At eight weeks, femurs from HF-PEMF group had a completely formed woven bone with dense trabeculae, active bone marrow, and had a significantly higher BV/TV ratio compared to control (p = 0.01). HF-PEMFs applied from the first postoperative day, 10 minutes/day for two weeks, enhance bone consolidation in rats, especially in the early phase of fracture healing.


Assuntos
Osso e Ossos/fisiologia , Calcificação Fisiológica , Campos Eletromagnéticos , Fraturas do Fêmur/terapia , Consolidação da Fratura , Animais , Ensaio de Imunoadsorção Enzimática , Fibrocartilagem , Masculino , Osteoblastos , Osteocalcina/metabolismo , Osteogênese , Período Pós-Operatório , Ratos , Ratos Wistar , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...