Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37837110

RESUMO

In this paper, we propose a novel tactile sensor with a "fingerprint" design, named due to its spiral shape and dimensions of 3.80 mm × 3.80 mm. The sensor is duplicated in a four-by-four array containing 16 tactile sensors to form a "SkinCell" pad of approximately 45 mm by 29 mm. The SkinCell was fabricated using a custom-built microfabrication platform called the NeXus which contains additive deposition tools and several robotic systems. We used the NeXus' six-degrees-of-freedom robotic platform with two different inkjet printers to deposit a conductive silver ink sensor electrode as well as the organic piezoresistive polymer PEDOT:PSS-Poly (3,4-ethylene dioxythiophene)-poly(styrene sulfonate) of our tactile sensor. Printing deposition profiles of 100-micron- and 250-micron-thick layers were measured using microscopy. The resulting structure was sintered in an oven and laminated. The lamination consisted of two different sensor sheets placed back-to-back to create a half-Wheatstone-bridge configuration, doubling the sensitivity and accomplishing temperature compensation. The resulting sensor array was then sandwiched between two layers of silicone elastomer that had protrusions and inner cavities to concentrate stresses and strains and increase the detection resolution. Furthermore, the tactile sensor was characterized under static and dynamic force loading. Over 180,000 cycles of indentation were conducted to establish its durability and repeatability. The results demonstrate that the SkinCell has an average spatial resolution of 0.827 mm, an average sensitivity of 0.328 mΩ/Ω/N, expressed as the change in resistance per force in Newtons, an average sensitivity of 1.795 µV/N at a loading pressure of 2.365 PSI, and a dynamic response time constant of 63 ms which make it suitable for both large area skins and fingertip human-robot interaction applications.

2.
Clin Biomech (Bristol, Avon) ; 106: 105987, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37207496

RESUMO

BACKGROUND: Difficulty with imitative gesturing is frequently observed as a clinical feature of autism. Current practices for assessment of imitative gesturing ability-behavioral observation and parent report-do not allow precise measurement of specific components of imitative gesturing performance, instead relying on subjective judgments. Advances in technology allow researchers to objectively quantify the nature of these movement differences, and to use less socially stressful interaction partners (e.g., robots). In this study, we aimed to quantify differences in imitative gesturing between autistic and neurotypical development during human-robot interaction. METHODS: Thirty-five autistic (n = 19) and neurotypical (n = 16) participants imitated social gestures of an interactive robot (e.g., wave). The movements of the participants and the robot were recorded using an infrared motion-capture system with reflective markers on corresponding head and body locations. We used dynamic time warping to quantify the degree to which the participant's and robot's movement were aligned across the movement cycle and work contribution to determine how each joint angle was producing the movements. FINDINGS: Results revealed differences between autistic and neurotypical participants in imitative accuracy and work contribution, primarily in the movements requiring unilateral extension of the arm. Autistic individuals imitated the robot less accurately and used less work at the shoulder compared to neurotypical individuals. INTERPRETATION: These findings indicate differences in autistic participants' ability to imitate an interactive robot. These findings build on our understanding of the underlying motor control and sensorimotor integration mechanisms that support imitative gesturing in autism which may aid in identifying appropriate intervention targets.


Assuntos
Transtorno Autístico , Robótica , Humanos , Gestos , Movimento , Extremidade Superior
3.
Polymers (Basel) ; 15(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37177367

RESUMO

Material extrusion-based polymer 3D printing, one of the most commonly used additive manufacturing processes for thermoplastics and composites, has drawn extensive attention due to its capability and cost effectiveness. However, the low surface finish quality of the printed parts remains a drawback due to the nature of stacking successive layers along one direction and the nature of rastering of the extruded tracks of material. In this work, an in-process thermal radiation-assisted, surface reflow method is demonstrated that significantly improves the surface finish of the sidewalls of printed parts. It is observed that the surface finish of the printed part is drastically improved for both flat and curved surfaces. The effect of surface reflow on roughness reduction was characterized using optical profilometry and scanning electron microscopy (SEM), while the local heated spot temperature was quantified using a thermal camera.

5.
J Med Internet Res ; 22(11): e17509, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33180024

RESUMO

BACKGROUND: According to the US Bureau of Labor Statistics, nurses will be the largest labor pool in the United States by 2022, and more than 1.1 million nursing positions have to be filled by then in order to avoid a nursing shortage. In addition, the incidence rate of musculoskeletal disorders in nurses is above average in comparison with other occupations. Robot-assisted health care has the potential to alleviate the nursing shortage by automating mundane and routine nursing tasks. Furthermore, robots in health care environments may assist with safe patient mobility and handling and may thereby reduce the likelihood of musculoskeletal disorders. OBJECTIVE: This pilot study investigates the perceived ease of use and perceived usefulness (acceptability) of a customized service robot as determined by nursing students (as proxies for nursing staff in health care environments). This service robot, referred to as the Adaptive Robotic Nurse Assistant (ARNA), was developed to enhance the productivity of nurses through cooperation during physical tasks (eg, patient walking, item fetching, object delivery) as well as nonphysical tasks (eg, patient observation and feedback). This pilot study evaluated the acceptability of ARNA to provide ambulatory assistance to patients. METHODS: We conducted a trial with 24 participants to collect data and address the following research question: Is the use of ARNA as an ambulatory assistive device for patients acceptable to nurses? The experiments were conducted in a simulated hospital environment. Nursing students (as proxies for nursing staff) were grouped in dyads, with one participant serving as a nurse and the other acting as a patient. Two questionnaires were developed and administrated to the participants based on the Technology Acceptance Model with respect to the two subscales of perceived usefulness and perceived ease of use metrics. In order to evaluate the internal consistency/reliability of the questionnaires, we calculated Cronbach alpha coefficients. Furthermore, statistical analyses were conducted to evaluate the relation of each variable in the questionnaires with the overall perceived usefulness and perceived ease of use metrics. RESULTS: Both Cronbach alpha values were acceptably high (.93 and .82 for perceived usefulness and perceived ease of use questionnaires, respectively), indicating high internal consistency of the questionnaires. The correlation between the variables and the overall perceived usefulness and perceived ease of use metrics was moderate. The average perceived usefulness and perceived ease of use metrics among the participants were 4.13 and 5.42, respectively, out of possible score of 7, indicating a higher-than-average acceptability of this service robot. CONCLUSIONS: The results served to identify factors that could affect nurses' acceptance of ARNA and aspects needing improvement (eg, flexibility, ease of operation, and autonomy level).


Assuntos
Atitude do Pessoal de Saúde , Assistentes de Enfermagem/organização & administração , Robótica/métodos , Feminino , Humanos , Masculino , Projetos Piloto , Reprodutibilidade dos Testes , Tecnologia Assistiva , Estados Unidos
6.
Artigo em Inglês | MEDLINE | ID: mdl-29876370

RESUMO

Visuomotor integration (VMI), the use of visual information to guide motor planning, execution, and modification, is necessary for a wide range of functional tasks. To comprehensively, quantitatively assess VMI, we developed a paradigm integrating virtual environments, motion-capture, and mobile eye-tracking. Virtual environments enable tasks to be repeatable, naturalistic, and varied in complexity. Mobile eye-tracking and minimally-restricted movement enable observation of natural strategies for interacting with the environment. This paradigm yields a rich dataset that may inform our understanding of VMI in typical and atypical development.

7.
J Rehabil Assist Technol Eng ; 4: 2055668317708731, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31186928

RESUMO

OBJECTIVE: Surface electromyography has been a long-standing source of signals for control of powered prosthetic devices. By contrast, force myography is a more recent alternative to surface electromyography that has the potential to enhance reliability and avoid operational challenges of surface electromyography during use. In this paper, we report on experiments conducted to assess improvements in classification of surface electromyography signals through the addition of collocated force myography consisting of piezo-resistive sensors. METHODS: Force sensors detect intrasocket pressure changes upon muscle activation due to changes in muscle volume during activities of daily living. A heterogeneous sensor configuration with four surface electromyography-force myography pairs was investigated as a control input for a powered upper limb prosthetic. Training of two different multilevel neural perceptron networks was employed during classification and trained on data gathered during experiments simulating socket shift and muscle fatigue. RESULTS: Results indicate that intrasocket pressure data used in conjunction with surface EMG data can improve classification of human intent and control of a powered prosthetic device compared to traditional, surface electromyography only systems. SIGNIFICANCE: Additional sensors lead to significantly better signal classification during times of user fatigue, poor socket fit, as well as radial and ulnar wrist deviation. Results from experimentally obtained training data sets are presented.

8.
IEEE Trans Cybern ; 46(3): 655-67, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25823055

RESUMO

An intelligent human-robot interaction (HRI) system with adjustable robot behavior is presented. The proposed HRI system assists the human operator to perform a given task with minimum workload demands and optimizes the overall human-robot system performance. Motivated by human factor studies, the presented control structure consists of two control loops. First, a robot-specific neuro-adaptive controller is designed in the inner loop to make the unknown nonlinear robot behave like a prescribed robot impedance model as perceived by a human operator. In contrast to existing neural network and adaptive impedance-based control methods, no information of the task performance or the prescribed robot impedance model parameters is required in the inner loop. Then, a task-specific outer-loop controller is designed to find the optimal parameters of the prescribed robot impedance model to adjust the robot's dynamics to the operator skills and minimize the tracking error. The outer loop includes the human operator, the robot, and the task performance details. The problem of finding the optimal parameters of the prescribed robot impedance model is transformed into a linear quadratic regulator (LQR) problem which minimizes the human effort and optimizes the closed-loop behavior of the HRI system for a given task. To obviate the requirement of the knowledge of the human model, integral reinforcement learning is used to solve the given LQR problem. Simulation results on an x - y table and a robot arm, and experimental implementation results on a PR2 robot confirm the suitability of the proposed method.


Assuntos
Inteligência Artificial , Cibernética/métodos , Robótica/métodos , Simulação por Computador , Humanos , Modelos Neurológicos , Análise e Desempenho de Tarefas
9.
Artigo em Inglês | MEDLINE | ID: mdl-29416193

RESUMO

As the use of robots increases for tasks that require human-robot interactions, it is vital that robots exhibit and understand human-like cues for effective communication. In this paper, we describe the implementation of object tracking capability on Philip K. Dick (PKD) android and a gaze tracking algorithm, both of which further robot capabilities with regard to human communication. PKD's ability to track objects with human-like head postures is achieved with visual feedback from a Kinect system and an eye camera. The goal of object tracking with human-like gestures is twofold : to facilitate better human-robot interactions and to enable PKD as a human gaze emulator for future studies. The gaze tracking system employs a mobile eye tracking system (ETG; SensoMotoric Instruments) and a motion capture system (Cortex; Motion Analysis Corp.) for tracking the head orientations. Objects to be tracked are displayed by a virtual reality system, the Computer Assisted Rehabilitation Environment (CAREN; MotekForce Link). The gaze tracking algorithm converts eye tracking data and head orientations to gaze information facilitating two objectives: to evaluate the performance of the object tracking system for PKD and to use the gaze information to predict the intentions of the user, enabling the robot to understand physical cues by humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...