Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32832933

RESUMO

Timely detection of an individual's stress level has the potential to improve stress management, thereby reducing the risk of adverse health consequences that may arise due to mismanagement of stress. Recent advances in wearable sensing have resulted in multiple approaches to detect and monitor stress with varying levels of accuracy. The most accurate methods, however, rely on clinical-grade sensors to measure physiological signals; they are often bulky, custom made, and expensive, hence limiting their adoption by researchers and the general public. In this article, we explore the viability of commercially available off-the-shelf sensors for stress monitoring. The idea is to be able to use cheap, nonclinical sensors to capture physiological signals and make inferences about the wearer's stress level based on that data. We describe a system involving a popular off-the-shelf heart rate monitor, the Polar H7; we evaluated our system with 26 participants in both a controlled lab setting with three well-validated stress-inducing stimuli and in free-living field conditions. Our analysis shows that using the off-the-shelf sensor alone, we were able to detect stressful events with an F1-score of up to 0.87 in the lab and 0.66 in the field, on par with clinical-grade sensors.

2.
Sensors (Basel) ; 19(11)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146358

RESUMO

While modern low-power microcontrollers are a cornerstone of wearable physiological sensors, their limited on-chip storage typically makes peripheral storage devices a requirement for long-term physiological sensing-significantly increasing both size and power consumption. Here, a wearable biosensor system capable of long-term recording of physiological signals using a single, 64 kB microcontroller to minimize sensor size and improve energy performance is described. Electrodermal (EDA) signals were sampled and compressed using a multiresolution wavelet transformation to achieve long-term storage within the limited memory of a 16-bit microcontroller. The distortion of the compressed signal and errors in extracting common EDA features is evaluated across 253 independent EDA signals acquired from human volunteers. At a compression ratio (CR) of 23.3×, the root mean square error (RMSErr) is below 0.016 µ S and the percent root-mean-square difference (PRD) is below 1%. Tonic EDA features are preserved at a CR = 23.3× while phasic EDA features are more prone to reconstruction errors at CRs > 8.8×. This compression method is shown to be competitive with other compressive sensing-based approaches for EDA measurement while enabling on-board access to raw EDA data and efficient signal reconstructions. The system and compression method provided improves the functionality of low-resource microcontrollers by limiting the need for external memory devices and wireless connectivity to advance the miniaturization of wearable biosensors for mobile applications.


Assuntos
Técnicas Biossensoriais , Resposta Galvânica da Pele , Desenho de Prótese , Dispositivos Eletrônicos Vestíveis , Algoritmos , Compressão de Dados , Humanos , Processamento de Sinais Assistido por Computador , Análise de Ondaletas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...