Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 19(45): 8790-8801, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37946586

RESUMO

Efficient exploration of space is a paramount motive for active colloids in practical applications. Yet, introducing activity may lead to surface-bound states, hindering efficient space exploration. Here, we show that the interplay between self-motility and fuel-dependent affinity for surfaces affects how efficiently catalytically-active Janus microswimmers explore both liquid-solid and liquid-fluid interfaces decorated with arrays of similarly-sized obstacles. In a regime of constant velocity vs. fuel concentration, we find that microswimmer-obstacle interactions strongly depend on fuel concentration, leading to a counter-intuitive decrease in space exploration efficiency with increased available fuel for all interfaces. Using experiments and theoretical predictions, we attribute this phenomenon to a largely overlooked change in the surface properties of the microswimmers' catalytic cap upon H2O2 exposure. Our findings have implications in the interpretation of experimental studies of catalytically active colloids, as well as in providing new handles to control their dynamics in complex environments.

2.
Adv Mater ; 35(25): e2300358, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36971035

RESUMO

Separation of particles by size, morphology, or material identity is of paramount importance in fields such as filtration or bioanalytics. Up to now separation of particles distinguished solely by surface properties or bulk/surface morphology remains a very challenging process. Here a combination of pressure-driven microfluidic flow and local self-phoresis/osmosis are proposed via the light-induced chemical activity of a photoactive azobenzene-surfactant solution. This process induces a vertical displacement of the sedimented particles, which depends on their size and surface properties . Consequently, different colloidal components experience different regions of the ambient microfluidic shear flow. Accordingly, a simple, versatile method for the separation of such can be achieved by elution times in a sense of particle chromatography. The concepts are illustrated via experimental studies, complemented by theoretical analysis, which include the separation of bulk-porous from bulk-compact colloidal particles and the separation of particles distinguished solely by slight differences in their surface physico-chemical properties.

3.
Biosensors (Basel) ; 13(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36671880

RESUMO

Catalytic micromotors can be used to detect molecules of interest in several ways. The straightforward approach is to use such motors as sensors of their "fuel" (i.e., of the species consumed for self-propulsion). Another way is in the detection of species which are not fuel but still modulate the catalytic processes facilitating self-propulsion. Both of these require analysis of the motion of the micromotors because the speed (or the diffusion coefficient) of the micromotors is the analytical signal. Alternatively, catalytic micromotors can be used as the means to enhance mass transport, and thus increase the probability of specific recognition events in the sample. This latter approach is based on "classic" (e.g., electrochemical) analytical signals and does not require an analysis of the motion of the micromotors. Together with a discussion of the current limitations faced by sensing concepts based on the speed (or diffusion coefficient) of catalytic micromotors, we review the findings of the studies devoted to the analytical performances of catalytic micromotor sensors. We conclude that the qualitative (rather than quantitative) analysis of small samples, in resource poor environments, is the most promising niche for the catalytic micromotors in analytical chemistry.


Assuntos
Microesferas , Catálise
4.
Sci Adv ; 7(18)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33931441

RESUMO

Chemically active Janus particles sustain non-equilibrium spatial variations in the chemical composition of the suspending solution; these induce hydrodynamic flow and (self-)motility of the particles. Direct mapping of these fields has so far proven to be too challenging. Therefore, indirect methods are needed, e.g., deconvolving the response of "tracer" particles to the activity-induced fields. Here, we study experimentally the response of silica particles, sedimented at a wall, to active Pt/silica Janus particles. The latter are either immobilized at the wall, with the symmetry axis perpendicular or parallel to the wall, or motile. The experiments reveal complex effective interactions that are dependent on the configuration and on the state of motion of the active particle. Within the framework of a coarse-grained model, the behavior of tracers near an immobilized Janus particle can be captured qualitatively once activity-induced osmotic flows on the wall are considered.

5.
Phys Chem Chem Phys ; 23(15): 9065-9069, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33885078

RESUMO

We study how crowding affects the activity and catalysis-enhanced diffusion of enzymes and passive tracers by employing a fluctuating-dumbbell model of conformation-changing enzymes. Our Brownian dynamics simulations reveal that the diffusion of enzymes depends qualitatively on the type of crowding. If only enzymes are present in the system, the catalysis-induced enhancement of the enzyme diffusion - somewhat counter-intuitively - increases with crowding, while it decreases if crowding is due to inert particles. For the tracers, the diffusion enhancement increases with increasing the enzyme concentration. We also show how the enzyme activity is reduced by crowding and propose a simple expression to describe this reduction. Our results highlight subtle effects at play concerning enzymatic activity and macromolecular transport in crowded systems, such as, e.g., the interior of living cells.


Assuntos
Enzimas/química , Biocatálise , Difusão , Simulação de Dinâmica Molecular , Conformação Proteica
6.
Eur Phys J E Soft Matter ; 44(2): 15, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33683489

RESUMO

For monolayers of chemically active particles at a fluid interface, collective dynamics is predicted to arise owing to activity-induced Marangoni flow even if the particles are not self-propelled. Here, we test this prediction by employing a monolayer of spherically symmetric active [Formula: see text] particles located at an oil-water interface with or without addition of a nonionic surfactant. Due to the spherical symmetry, an individual particle does not self-propel. However, the gradients produced by the photochemical fuel degradation give rise to long-ranged Marangoni flows. For the case in which surfactant is added to the system, we indeed observe the emergence of collective motion, with dynamics dependent on the particle coverage of the monolayer. The experimental observations are discussed within the framework of a simple theoretical mean-field model.

7.
ACS Nano ; 14(10): 13673-13680, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32946220

RESUMO

When asymmetric Janus micromotors are immobilized on a surface, they act as chemically powered micropumps, turning chemical energy from the fluid into a bulk flow. However, such pumps have previously produced only localized recirculating flows, which cannot be used to pump fluid in one direction. Here, we demonstrate that an array of three-dimensional, photochemically active Au/TiO2 Janus pillars can pump water. Upon UV illumination, a water-splitting reaction rapidly creates a directional bulk flow above the active surface. By lining a 2D microchannel with such active surfaces, various flow profiles are created within the channels. Analytical and numerical models of a channel with active surfaces predict flow profiles that agree very well with the experimental results. The light-driven active surfaces provide a way to wirelessly pump fluids at small scales and could be used for real-time, localized flow control in complex microfluidic networks.

8.
Langmuir ; 36(25): 6861-6870, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32233489

RESUMO

Chemically active particles suspended in a liquid solution can achieve self-motility by locally changing the chemical composition of the solution via catalytic reactions at their surfaces. They operate intrinsically out of equilibrium, continuously extracting free energy from the environment to power the dissipative self-motility. The effective interactions involving active particles are, in general, nonreciprocal and anisotropic, even if the particles have simple shapes (e.g., Janus spheres). Accordingly, for chemically active particles a very rich behavior of collective motion and self-assembly may be expected to emerge, including phenomena such as microphase separation in the form of kinetically stable, finite-sized aggregates. Here, I succinctly review a number of recent experimental studies that demonstrate the self-assembly of structures, involving chemically active Janus particles, which exhibit various patterns of motion. These examples illustrate concepts such as "motors made out of motors" (as suggestively named by Fischer [Fischer, P. Nat. Phys. 2018, 14, 1072]). The dynamics of assembly and structure formation observed in these systems can provide benchmark, in-depth testing of the current understanding of motion and effective interactions produced by chemical activity. Finally, one notes that these significant achievements are likely just the beginning of the field. Recently reported particles endowed with time-dependent chemical activity or switchable reaction mechanisms open the way for exciting developments, such as periodic reshaping of self-assembled structures based on man-made internal clocks.

9.
Langmuir ; 36(25): 7133-7147, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31986887

RESUMO

Chemically active particles achieve motility without external forces and torques ("self-propulsion") due to catalytic chemical reactions at their surfaces, which change the chemical composition of the surrounding solution (called "chemical field") and induce hydrodynamic flow of the solution. By coupling the distortions of these fields back to its motion, a chemically active particle experiences an effective interaction with confining surfaces. This coupling can lead to a rich behavior, such as the occurrence of wall-bound steady states of "sliding". Most active particles are density mismatched with the solution and, thus, tend to sediment. Moreover, the often employed Janus spheres, which consist of an inert core material decorated with a cap-like, thin layer of a catalyst, are gyrotactic (i.e., "bottom-heavy"). Whether or not they may exhibit sliding states at horizontal walls depends on the interplay between the active motion and the gravity-driven sedimentation and alignment, such as the gyrotactic tendency to align the axis along the gravity direction being overcome by a competing, activity-driven alignment with a different orientation. It is therefore important to understand and quantify the influence of these gravity-induced effects on the behavior of model chemically active particles moving in the vicinity of walls. For model gyrotactic, self-phoretic Janus particles, here we study theoretically the occurrence of sliding states at horizontal planar walls that are either below ("floor") or above ("ceiling") the particle. We construct "state diagrams" characterizing the occurrence of such states as a function of the sedimentation velocity and of the gyrotactic response of the particle, as well as of the phoretic mobility of the particle. We show that in certain cases sliding states may emerge simultaneously at both the ceiling and the floor, while the larger part of the experimentally relevant parameter space corresponds to particles that would exhibit sliding states only either at the floor or at the ceiling-or there are no sliding states at all. These predictions are critically compared with the results of previous experimental studies, as well as with our dedicated experiments carried out with Pt-coated, polystyrene-core, or silica-core Janus spheres immersed in aqueous hydrogen peroxide solutions.

10.
Phys Chem Chem Phys ; 21(35): 18811-18815, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31468044

RESUMO

Recent experiments have reported that diffusion of enzymes can be enhanced in the presence of their substrates. Using a fluctuating dumbbell model of enzymes, it has been argued that such an enhancement can be rationalized by the reduction of the enzyme size and by the suppression of the hydrodynamically coupled conformational fluctuations, induced by binding a substrate or an inhibitor to the enzyme [Nano Lett. 2017, 17, 4415]. Herein, we critically examine these expectations via extensive Brownian dynamics simulations of a similar model. The numerical results show that neither of the two mechanisms can cause an enhancement comparable to that reported experimentally, unless very large, physically counter-intuitive, enzyme deformations are invoked.


Assuntos
Enzimas/química , Enzimas/metabolismo , Simulação de Dinâmica Molecular , Difusão , Modelos Químicos
11.
Soft Matter ; 15(28): 5644-5672, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31245803

RESUMO

For chemically active particles suspended in a liquid solution and moving by self-phoresis, the dynamics near chemically inert, planar walls is studied theoretically by employing various choices for the activity function, i.e., the spatial distribution of the sites where various chemical reactions take place. We focus on the case of solutions composed of electrically neutral species. This analysis extends previous studies of the case that the chemical activity can be modeled effectively as the release of a "product" molecular species from parts of the surface of the particle by accounting for annihilation of the product molecules by chemical reactions, either on the rest of the surface of the particle or in the volume of the surrounding solution. We show that, for the models considered here, the emergence of "sliding" and "hovering" wall-bound states is a generic, robust feature. However, the details of these states, such as the range of parameters within which they occur, depend on the specific model for the activity function. Additionally, in certain cases there is a reversal of the direction of the motion compared to the one observed if the particle is far away from the wall. We have also studied the changes of the dynamics induced by a direct interaction between the particle and the wall by including a short-ranged repulsive component to the interaction in addition to the steric one (a procedure often employed in numerical simulations of active colloids). Upon increasing the strength of this additional component, while keeping its range fixed, significant qualitative changes occur in the phase portraits of the dynamics near the wall: for sufficiently strong short-ranged repulsion, the sliding steady states of the dynamics are transformed into hovering states. Furthermore, our studies provide evidence for an additional "oscillatory" wall-bound steady state of motion for chemically active particles due to a strong, short-ranged, and direct repulsion. This kind of particle translates along the wall at a distance from it which oscillates between a minimum and a maximum.

12.
Acc Chem Res ; 51(12): 2991-2997, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30403132

RESUMO

Chemically active colloids can achieve force- and torque-free motility ("self-propulsion") via the promotion, on their surface, of catalytic chemical reactions involving the surrounding solution. Such systems are valuable both from a theoretical perspective, serving as paradigms for nonequilibrium processes, as well as from an application viewpoint, according to which active colloids are envisioned to play the role of carriers ("engines") in novel lab-on-a-chip devices. The motion of such colloids is intrinsically connected with a "chemical field", i.e., the distribution near the colloid of the number densities of the various chemical species present in the solution, and with the hydrodynamic flow of the solution around the particle. In most of the envisioned applications, and in virtually all reported experimental studies, the active colloids operate under spatial confinement (e.g., within a microfluidic channel, a drop, a free-standing liquid film, etc.). In such cases, the chemical field and the hydrodynamic flow associated with an active colloid are influenced by any nearby confining surfaces, and these disturbances couple back to the particle. Thus, an effective interaction with the spatial confinement arises. Consequently, the particle is endowed with means to perceive and to respond to its environment. Understanding these effective interactions, finding the key parameters which control them, and designing particles with desired, preconfigured responses to given environments, require interdisciplinary approaches which synergistically integrate methods and knowledge from physics, chemistry, engineering, and materials science. Here we review how, via simple models of chemical activity and self-phoretic motion, progress has recently been made in understanding the basic physical principles behind the complex behaviors exhibited by active particles near interfaces. First, we consider the occurrence of "interface-bounded" steady states of chemically active colloids near simple, nonresponsive interfaces. Examples include particles "sliding" along, or "hovering" above, a hard planar wall while inducing hydrodynamic flow of the solution. These states lay the foundations for concepts like the guidance of particles by the topography of the wall. We continue to discuss responsive interfaces: a suitable chemical patterning of a planar wall allows one to bring the particles into states of motion which are spatially localized (e.g., within chemical stripes or along chemical steps). These occur due to the wall responding to the activity-induced chemical gradients by generating osmotic flows, which encode the surface-chemistry of the wall. Finally, we discuss how, via activity-induced Marangoni stresses, long-ranged effective interactions emerge from the strong hydrodynamic response of fluid interfaces. These examples highlight how in this context a desired behavior can be potentially selected by tuning suitable parameters (e.g., the phoretic mobility of the particle, or the strength of the Marangoni stress at an interface). This can be accomplished via a judicious design of the surface chemistry of the particle and of the boundary, or by the choice of the chemical reaction in solution.

13.
Soft Matter ; 14(39): 8017-8029, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30246847

RESUMO

Thermally or chemically active colloids generate thermodynamic gradients in the solution in which they are immersed and thereby induce hydrodynamic flows that affect their dynamical evolution. Here we study a mean-field model for the many-body dynamics of a monolayer of spherically symmetric active particles located at a fluid-fluid interface. Due to the spherical symmetry, the particles do not self-propel. Instead, the dynamics is driven by the long-ranged Marangoni flows, due to the response of the interface to the activity of the particles, which compete with the direct interaction between particles. We demonstrate analytically that, in spite of the intrinsic out-of-equilibrium character of the system, the monolayer evolves to a "pseudoequilibrium" state, in which the Marangoni flows force the coexistence of the thermodynamic phases associated to the direct interaction. In particular, we study the most interesting case of a r-3 soft repulsion that models electrostatic or magnetic interparticle forces. For a sufficiently large average density, two-dimensional phase transitions (freezing from liquid to hexatic, and melting from solid to hexatic) should be observable in a radially stratified, "onion-like" structure within the monolayer. Furthermore, the analysis allows us to conclude that, while the activity may be too weak to allow direct detection of such induced Marangoni flows, it is relevant as a collective effect in the emergence of the experimentally observable spatial structure of phase coexistences noted above. Finally, the relevance of these results for potential experimental realizations is critically discussed.

14.
Soft Matter ; 14(34): 6969-6973, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30074047

RESUMO

We report novel metal-capped TiO2 photochemically-active colloids endowed with a 'hybrid drive': directional motion is achieved in water upon UV illumination, as well as in dilute peroxide solutions upon illumination with UV or visible light. From the different behaviours of nearby particles, we infer that distinct reaction pathways affect the local composition and flow of the solution.

15.
Nano Lett ; 18(9): 5345-5349, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30047271

RESUMO

While colloids and molecules in solution exhibit passive Brownian motion, particles that are partially covered with a catalyst, which promotes the transformation of a fuel dissolved in the solution, can actively move. These active Janus particles are known as "chemical nanomotors" or self-propelling "swimmers" and have been realized with a range of catalysts, sizes, and particle geometries. Because their active translation depends on the fuel concentration, one expects that active colloidal particles should also be able to swim toward a fuel source. Synthesizing and engineering nanoparticles with distinct chemotactic properties may enable important developments, such as particles that can autonomously swim along a pH gradient toward a tumor. Chemotaxis requires that the particles possess an active coupling of their orientation to a chemical gradient. In this Perspective we provide a simple, intuitive description of the underlying mechanisms for chemotaxis, as well as the means to analyze and classify active particles that can show positive or negative chemotaxis. The classification provides guidance for engineering a specific response and is a useful organizing framework for the quantitative analysis and modeling of chemotactic behaviors. Chemotaxis is emerging as an important focus area in the field of active colloids and promises a number of fascinating applications for nanoparticles and particle-based delivery.

16.
ACS Nano ; 10(9): 8751-9, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27598543

RESUMO

Self-motile Janus colloids are important for enabling a wide variety of microtechnology applications as well as for improving our understanding of the mechanisms of motion of artificial micro- and nanoswimmers. We present here micro/nanomotors which possess a reversed Janus structure of an internal catalytic "chemical engine". The catalytic material (here platinum (Pt)) is embedded within the interior of the mesoporous silica (mSiO2)-based hollow particles and triggers the decomposition of H2O2 when suspended in an aqueous peroxide (H2O2) solution. The pores/gaps at the noncatalytic (Pt) hemisphere allow the exchange of chemical species in solution between the exterior and the interior of the particle. By varying the diameter of the particles, we observed size-dependent motile behavior in the form of enhanced diffusion for 500 nm particles, and self-phoretic motion, toward the nonmetallic part, for 1.5 and 3 µm ones. The direction of motion was rationalized by a theoretical model based on self-phoresis. For the 3 µm particles, a change in the morphology of the porous part is observed, which is accompanied by a change in the mechanism of propulsion via bubble nucleation and ejection as well as a change in the direction of motion.

17.
Nat Commun ; 7: 10598, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26856370

RESUMO

Achieving control over the directionality of active colloids is essential for their use in practical applications such as cargo carriers in microfluidic devices. So far, guidance of spherical Janus colloids was mainly realized using specially engineered magnetic multilayer coatings combined with external magnetic fields. Here we demonstrate that step-like submicrometre topographical features can be used as reliable docking and guiding platforms for chemically active spherical Janus colloids. For various topographic features (stripes, squares or circular posts), docking of the colloid at the feature edge is robust and reliable. Furthermore, the colloids move along the edges for significantly long times, which systematically increase with fuel concentration. The observed phenomenology is qualitatively captured by a simple continuum model of self-diffusiophoresis near confining boundaries, indicating that the chemical activity and associated hydrodynamic interactions with the nearby topography are the main physical ingredients behind the observed behaviour.

18.
J Chem Phys ; 140(10): 104906, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24628204

RESUMO

Interaction forces between carboxylate colloidal latex particles of about 2 µm in diameter immersed in aqueous solutions of monovalent salts were measured with the colloidal probe technique, which is based on the atomic force microscope. We have systematically varied the ionic strength, the type of salt, and also the surface charge densities of the particles through changes in the solution pH. Based on these measurements, we have accurately measured the dispersion forces acting between the particles and estimated the apparent Hamaker constant to be (2.0 ± 0.5) × 10(-21) J at a separation distance of about 10 nm. This value is basically independent of the salt concentration and the type of salt. Good agreement with Lifshitz theory is found when roughness effects are taken into account. The combination of retardation and roughness effects reduces the value of the apparent Hamaker constant and its ionic strength dependence with respect to the case of ideally smooth surfaces.

19.
J Colloid Interface Sci ; 402: 259-66, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23660024

RESUMO

Glass capillaries are prepared with well-defined regions of tuneable wettability on the interior walls using an inexpensive and simple approach. A homogeneous layer of hydrophilic TiO2 nanoparticles is adsorbed on the capillary wall and chemically hydrophobized using octadecyltrihydrosilane (OTHS). The hydrophobic OTHS monolayer is then patterned by spatially-selective removal of the OTHS via TiO2-catalysed decomposition by ultraviolet irradiation. By patterning the capillaries with hydrophilic-hydrophobic rings, modulated penetration of a liquid (glycerol, in this study) can be achieved. For given wettability contrast, the penetration dynamics and equilibrium rise heights are very sensitive to the characteristic length-scale of the pattern, and may offer greater, time-dependent sampling control in fluidic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...