Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Reprod Dev ; 62(2): 127-35, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-26640117

RESUMO

Utilizing 3D structured illumination microscopy, we investigated the quality and quantity of nuclear invaginations and the distribution of nuclear pores during rabbit early embryonic development and identified the exact time point of nucleoporin 153 (NUP153) association with chromatin during mitosis. Contrary to bovine early embryonic nuclei, featuring almost exclusively nuclear invaginations containing a small volume of cytoplasm, nuclei in rabbit early embryonic stages show additionally numerous invaginations containing a large volume of cytoplasm. Small-volume invaginations frequently emanated from large-volume nuclear invaginations but not vice versa, indicating a different underlying mechanism. Large- and small-volume nuclear envelope invaginations required the presence of chromatin, as they were restricted to chromatin-positive areas. The chromatin-free contact areas between nucleolar precursor bodies (NPBs) and large-volume invaginations were free of nuclear pores. Small-volume invaginations were not in contact with NPBs. The number of invaginations and isolated intranuclear vesicles per nucleus peaked at the 4-cell stage. At this stage, the nuclear surface showed highly concentrated clusters of nuclear pores surrounded by areas free of nuclear pores. Isolated intranuclear lamina vesicles were usually NUP153 negative. Cytoplasmic, randomly distributed NUP153-positive clusters were highly abundant at the zygote stage and decreased in number until they were almost absent at the 8-cell stage and later. These large NUP153 clusters may represent a maternally provided NUP153 deposit, but they were not visible as clusters during mitosis. Major genome activation at the 8- to 16-cell stage may mark the switch from a necessity for a deposit to on-demand production. NUP153 association with chromatin is initiated during metaphase before the initiation of the regeneration of the lamina. To our knowledge, the present study demonstrates for the first time major remodeling of the nuclear envelope and its underlying lamina during rabbit preimplantation development.


Assuntos
Desenvolvimento Embrionário , Membrana Nuclear/metabolismo , Lâmina Nuclear/metabolismo , Animais , Blastocisto , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Cromátides/metabolismo , Cromatina/metabolismo , Análise por Conglomerados , Citoplasma/metabolismo , Feminino , Imageamento Tridimensional , Lamina Tipo B/metabolismo , Masculino , Microscopia Confocal , Mitose , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Coelhos
2.
BMC Dev Biol ; 15: 46, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26610350

RESUMO

BACKGROUND: Super-resolution fluorescence microscopy performed via 3D structured illumination microscopy (3D-SIM) is well established on flat, adherent cells. However, blastomeres of mammalian embryos are non-adherent, round and large. Scanning whole mount mammalian embryos with 3D-SIM is prone to failure due to the movement during scanning and the large distance to the cover glass. RESULTS: Here we present a highly detailed protocol that allows performing 3D-SIM on blastomeres of mammalian embryos with an image quality comparable to scans in adherent cells. This protocol was successfully tested on mouse, rabbit and cattle embryos and on rabbit spermatozoa. CONCLUSIONS: Our protocol provides detailed instructions on embryo staining, blastomere isolation, blastomere attachment, embedding, correct oil predictions, scanning conditions, and oil correction choices after the first scan. Finally, the most common problems are documented and solutions are suggested. To our knowledge, this protocol presents for the first time a highly detailed and practical way to perform 3D-SIM on mammalian embryos and spermatozoa.


Assuntos
Blastômeros/fisiologia , Embrião de Mamíferos/fisiologia , Imageamento Tridimensional/métodos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Espermatozoides/fisiologia , Animais , Bovinos , Masculino , Camundongos , Coelhos , Coloração e Rotulagem/métodos , Inclusão do Tecido/métodos , Fixação de Tecidos/métodos
3.
FEBS Lett ; 589(20 Pt A): 2931-43, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26028501

RESUMO

Recent methodological advancements in microscopy and DNA sequencing-based methods provide unprecedented new insights into the spatio-temporal relationships between chromatin and nuclear machineries. We discuss a model of the underlying functional nuclear organization derived mostly from electron and super-resolved fluorescence microscopy studies. It is based on two spatially co-aligned, active and inactive nuclear compartments (ANC and INC). The INC comprises the compact, transcriptionally inactive core of chromatin domain clusters (CDCs). The ANC is formed by the transcriptionally active periphery of CDCs, called the perichromatin region (PR), and the interchromatin compartment (IC). The IC is connected to nuclear pores and serves nuclear import and export functions. The ANC is the major site of RNA synthesis. It is highly enriched in epigenetic marks for transcriptionally competent chromatin and RNA Polymerase II. Marks for silent chromatin are enriched in the INC. Multi-scale cross-correlation spectroscopy suggests that nuclear architecture resembles a random obstacle network for diffusing proteins. An increased dwell time of proteins and protein complexes within the ANC may help to limit genome scanning by factors or factor complexes to DNA exposed within the ANC.


Assuntos
Núcleo Celular/ultraestrutura , Cromatina/fisiologia , Animais , Núcleo Celular/fisiologia , Cromatina/ultraestrutura , Reparo do DNA , Regulação da Expressão Gênica , Humanos , Transcrição Gênica
4.
PLoS One ; 10(5): e0124619, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25932910

RESUMO

The present study demonstrates a major remodeling of the nuclear envelope and its underlying lamina during bovine preimplantation development. Up to the onset of major embryonic genome activation (MGA) at the 8-cell stage nuclei showed a non-uniform distribution of nuclear pore complexes (NPCs). NPCs were exclusively present at sites where DNA contacted the nuclear lamina. Extended regions of the lamina, which were not contacted by DNA, lacked NPCs. In post-MGA nuclei the whole lamina was contacted rather uniformly by DNA. Accordingly, NPCs became uniformly distributed throughout the entire nuclear envelope. These findings shed new light on the conditions which control the integration of NPCs into the nuclear envelope. The switch from maternal to embryonic production of mRNAs was accompanied by multiple invaginations covered with NPCs, which may serve the increased demands of mRNA export and protein import. Other invaginations, as well as interior nuclear segments and vesicles without contact to the nuclear envelope, were exclusively positive for lamin B. Since the abundance of these invaginations and vesicles increased in concert with a massive nuclear volume reduction, we suggest that they reflect a mechanism for fitting the nuclear envelope and its lamina to a shrinking nuclear size during bovine preimplantation development. In addition, a deposit of extranuclear clusters of NUP153 (a marker for NPCs) without associated lamin B was frequently observed from the zygote stage up to MGA. Corresponding RNA-Seq data revealed deposits of spliced, maternally provided NUP153 mRNA and little unspliced, newly synthesized RNA prior to MGA, which increased strongly at the initiation of embryonic expression of NUP153 at MGA.


Assuntos
Desenvolvimento Embrionário , Lâmina Nuclear/metabolismo , Processamento Alternativo/genética , Animais , Bovinos , Tamanho do Núcleo Celular , Cromatina/metabolismo , Cromossomos de Mamíferos/metabolismo , DNA/metabolismo , Imageamento Tridimensional , Laminas/metabolismo , Microscopia , Mitose , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Transcriptoma/genética
5.
Nucleus ; 5(6): 542-54, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25495180

RESUMO

Cloned bovine preimplantation embryos were generated by somatic cell nuclear transfer (SCNT) of bovine fetal fibroblasts with a silent copy of the pluripotency reporter gene GOF, integrated at a single site of a chromosome 13. GOF combines the regulatory Oct4/Pou5f1 sequence with the coding sequence for EGFP. EGFP expression served as a marker for pluripotency gene activation and was consistently detected in preimplantation embryos with 9 and more cells. Three-dimensional radial nuclear positions of GOF, its carrier chromosome territory and non-carrier homolog were measured in nuclei of fibroblasts, and of day 2 and day 4 embryos, carrying 2 to 9 and 15 to 22 cells, respectively. We tested, whether transcriptional activation was correlated with repositioning of GOF toward the nuclear interior either with a corresponding movement of its carrier chromosome territory 13 or via the formation of a giant chromatin loop. A significant shift of GOF away from the nuclear periphery was observed in day 2 embryos together with both carrier and non-carrier chromosome territories. At day 4, GOF, its carrier chromosome territory 13 and the non-carrier homolog had moved back toward the nuclear periphery. Similar movements of both chromosome territories ruled out a specific GOF effect. Pluripotency gene activation was preceded by a transient, radial shift of GOF toward the nuclear interior. The persistent co-localization of GOF with its carrier chromosome territory rules out the formation of a giant chromatin loop during GOF activation.


Assuntos
Núcleo Celular/genética , Cromossomos/genética , Desenvolvimento Embrionário , Técnicas de Transferência Nuclear , Ativação Transcricional , Animais , Blastocisto , Bovinos , Núcleo Celular/metabolismo , Reprogramação Celular/genética , Clonagem de Organismos , Embrião de Mamíferos , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fator 3 de Transcrição de Octâmero/metabolismo
6.
Nucleus ; 5(6): 555-89, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25482066

RESUMO

Nuclear landscapes were studied during preimplantation development of bovine embryos, generated either by in vitro fertilization (IVF), or generated as cloned embryos by somatic cell nuclear transfer (SCNT) of bovine fetal fibroblasts, using 3-dimensional confocal laser scanning microscopy (3D-CLSM) and structured illumination microscopy (3D-SIM). Nuclear landscapes of IVF and SCNT embryonic nuclei were compared with each other and with fibroblast nuclei. We demonstrate that reprogramming of fibroblast nuclei in cloned embryos requires changes of their landscapes similar to nuclei of IVF embryos. On the way toward the 8-cell stage, where major genome activation occurs, a major lacuna, enriched with splicing factors, was formed in the nuclear interior and chromosome territories (CTs) were shifted toward the nuclear periphery. During further development the major lacuna disappeared and CTs were redistributed throughout the nuclear interior forming a contiguous higher order chromatin network. At all stages of development CTs of IVF and SCNT embryonic nuclei were built up from chromatin domain clusters (CDCs) pervaded by interchromatin compartment (IC) channels. Quantitative analyses revealed a highly significant enrichment of RNA polymerase II and H3K4me3, a marker for transcriptionally competent chromatin, at the periphery of CDCs. In contrast, H3K9me3, a marker for silent chromatin, was enriched in the more compacted interior of CDCs. Despite these striking similarities, we also detected major differences between nuclear landscapes of IVF and cloned embryos. Possible implications of these differences for the developmental potential of cloned animals remain to be investigated. We present a model, which integrates generally applicable structural and functional features of the nuclear landscape.


Assuntos
Núcleo Celular/genética , Reprogramação Celular/genética , Cromossomos/genética , Fertilização in vitro , Técnicas de Transferência Nuclear , Animais , Bovinos , Núcleo Celular/metabolismo , Cromatina/genética , Clonagem de Organismos , Embrião de Mamíferos , Desenvolvimento Embrionário , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-25057298

RESUMO

BACKGROUND: A Xist RNA decorated Barr body is the structural hallmark of the compacted inactive X territory in female mammals. Using super-resolution three-dimensional structured illumination microscopy (3D-SIM) and quantitative image analysis, we compared its ultrastructure with active chromosome territories (CTs) in human and mouse somatic cells, and explored the spatio-temporal process of Barr body formation at onset of inactivation in early differentiating mouse embryonic stem cells (ESCs). RESULTS: We demonstrate that all CTs are composed of structurally linked chromatin domain clusters (CDCs). In active CTs the periphery of CDCs harbors low-density chromatin enriched with transcriptionally competent markers, called the perichromatin region (PR). The PR borders on a contiguous channel system, the interchromatin compartment (IC), which starts at nuclear pores and pervades CTs. We propose that the PR and macromolecular complexes in IC channels together form the transcriptionally permissive active nuclear compartment (ANC). The Barr body differs from active CTs by a partially collapsed ANC with CDCs coming significantly closer together, although a rudimentary IC channel system connected to nuclear pores is maintained. Distinct Xist RNA foci, closely adjacent to the nuclear matrix scaffold attachment factor-A (SAF-A) localize throughout Xi along the rudimentary ANC. In early differentiating ESCs initial Xist RNA spreading precedes Barr body formation, which occurs concurrent with the subsequent exclusion of RNA polymerase II (RNAP II). Induction of a transgenic autosomal Xist RNA in a male ESC triggers the formation of an 'autosomal Barr body' with less compacted chromatin and incomplete RNAP II exclusion. CONCLUSIONS: 3D-SIM provides experimental evidence for profound differences between the functional architecture of transcriptionally active CTs and the Barr body. Basic structural features of CT organization such as CDCs and IC channels are however still recognized, arguing against a uniform compaction of the Barr body at the nucleosome level. The localization of distinct Xist RNA foci at boundaries of the rudimentary ANC may be considered as snap-shots of a dynamic interaction with silenced genes. Enrichment of SAF-A within Xi territories and its close spatial association with Xist RNA suggests their cooperative function for structural organization of Xi.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...