Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 13(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37109400

RESUMO

Non-invasive visualization and monitoring of tissue-engineered structures in a living organism is a challenge. One possible solution to this problem is to use upconversion nanoparticles (UCNPs) as photoluminescent nanomarkers in scaffolds. We synthesized and studied scaffolds based on natural (collagen-COL and hyaluronic acid-HA) and synthetic (polylactic-co-glycolic acids-PLGA) polymers loaded with ß-NaYF4:Yb3+, Er3+ nanocrystals (21 ± 6 nm). Histomorphological analysis of tissue response to subcutaneous implantation of the polymer scaffolds in BALB/c mice was performed. The inflammatory response of the surrounding tissues was found to be weak for scaffolds based on HA and PLGA and moderate for COL scaffolds. An epi-luminescent imaging system with 975 nm laser excitation was used for in vivo visualization and photoluminescent analysis of implanted scaffolds. We demonstrated that the UCNPs' photoluminescent signal monotonously decreased in all the examined scaffolds, indicating their gradual biodegradation followed by the release of photoluminescent nanoparticles into the surrounding tissues. In general, the data obtained from the photoluminescent analysis correlated satisfactorily with the histomorphological analysis.

2.
Polymers (Basel) ; 15(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36904522

RESUMO

This paper concerns a detailed study of the phase separation and structure formation processes that occur in solutions of highly hydrophobic polylactic-co-glycolic acid (PLGA) in highly hydrophilic tetraglycol (TG) upon their contact with aqueous media. In the present work, cloud point methodology, high-speed video recording, differential scanning calorimetry, and both optical and scanning electron microscopy were used to analyze the behavior of PLGA/TG mixtures differing in composition when they are immersed in water (the so-called "harsh" antisolvent) or in a nonsolvent consisting of equal amounts of water and TG (a "soft" antisolvent). The phase diagram of the ternary PLGA/TG/water system was designed and constructed for the first time. The PLGA/TG mixture composition with which the polymer undergoes glass transition at room temperature was determined. Our data enabled us to analyze in detail the structure evolution process taking place in various mixtures upon their immersion in "harsh" and "soft" antisolvent baths and gain an insight into the peculiarities of the structure formation mechanism active in the course of antisolvent-induced phase separation in PLGA/TG/water mixtures. This provides intriguing opportunities for the controlled fabrication of a wide variety of bioresorbable structures-from polyester microparticles, fibers, and membranes to scaffolds for tissue engineering.

3.
Molecules ; 27(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36235084

RESUMO

Modern biocompatible materials of both natural and synthetic origin, in combination with advanced techniques for their processing and functionalization, provide the basis for tissue engineering constructs (TECs) for the effective replacement of specific body defects and guided tissue regeneration. Here we describe TECs fabricated using electrospinning and 3D printing techniques on a base of synthetic (polylactic-co-glycolic acids, PLGA) and natural (collagen, COL, and hyaluronic acid, HA) polymers impregnated with core/shell ß-NaYF4:Yb3+,Er3+/NaYF4 upconversion nanoparticles (UCNPs) for in vitro control of the tissue/scaffold interaction. Polymeric structures impregnated with core/shell ß-NaYF4:Yb3+,Er3+/NaYF4 nanoparticles were visualized with high optical contrast using laser irradiation at 976 nm. We found that the photoluminescence spectra of impregnated scaffolds differ from the spectrum of free UCNPs that could be used to control the scaffold microenvironment, polymer biodegradation, and cargo release. We proved the absence of UCNP-impregnated scaffold cytotoxicity and demonstrated their high efficiency for cell attachment, proliferation, and colonization. We also modified the COL-based scaffold fabrication technology to increase their tensile strength and structural stability within the living body. The proposed approach is a technological platform for "smart scaffold" development and fabrication based on bioresorbable polymer structures impregnated with UCNPs, providing the desired photoluminescent, biochemical, and mechanical properties for intravital visualization and monitoring of their behavior and tissue/scaffold interaction in real time.


Assuntos
Nanopartículas , Engenharia Tecidual , Materiais Biocompatíveis/farmacologia , Colágeno/química , Ácido Hialurônico , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros , Alicerces Teciduais/química
4.
Front Bioeng Biotechnol ; 10: 895406, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091441

RESUMO

Brain tissue reconstruction posttraumatic injury remains a long-standing challenge in neurotransplantology, where a tissue-engineering construct (scaffold, SC) with specific biochemical properties is deemed the most essential building block. Such three-dimensional (3D) hydrogel scaffolds can be formed using brain-abundant endogenous hyaluronic acid modified with glycidyl methacrylate by employing our proprietary photopolymerisation technique. Herein, we produced 3D hyaluronic scaffolds impregnated with neurotrophic factors (BDNF, GDNF) possessing 600 kPa Young's moduli and 336% swelling ratios. Stringent in vitro testing of fabricated scaffolds using primary hippocampal cultures revealed lack of significant cytotoxicity: the number of viable cells in the SC+BDNF (91.67 ± 1.08%) and SC+GDNF (88.69 ± 1.2%) groups was comparable to the sham values (p > 0.05). Interestingly, BDNF-loaded scaffolds promoted the stimulation of neuronal process outgrowth during the first 3 days of cultures development (day 1: 23.34 ± 1.46 µm; day 3: 37.26 ± 1.98 µm, p < 0.05, vs. sham), whereas GDNF-loaded scaffolds increased the functional activity of neuron-glial networks of cultures at later stages of cultivation (day 14) manifested in a 1.3-fold decrease in the duration coupled with a 2.4-fold increase in the frequency of Ca2+ oscillations (p < 0.05, vs. sham). In vivo studies were carried out using C57BL/6 mice with induced traumatic brain injury, followed by surgery augmented with scaffold implantation. We found positive dynamics of the morphological changes in the treated nerve tissue in the post-traumatic period, where the GDNF-loaded scaffolds indicated more favorable regenerative potential. In comparison with controls, the physiological state of the treated mice was improved manifested by the absence of severe neurological deficit, significant changes in motor and orienting-exploratory activity, and preservation of the ability to learn and retain long-term memory. Our results suggest in favor of biocompatibility of GDNF-loaded scaffolds, which provide a platform for personalized brain implants stimulating effective morphological and functional recovery of nerve tissue after traumatic brain injury.

5.
Gels ; 8(7)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35877506

RESUMO

Gene therapy is one of the most promising approaches in regenerative medicine to restore damaged tissues of various types. However, the ability to control the dose of bioactive molecules in the injection site can be challenging. The combination of genetic constructs, bioresorbable material, and the 3D printing technique can help to overcome these difficulties and not only serve as a microenvironment for cell infiltration but also provide localized gene release in a more sustainable way to induce effective cell differentiation. Herein, the cell transfection with plasmid DNA directly incorporated into sodium alginate prior to 3D printing was investigated both in vitro and in vivo. The 3D cryoprinting ensures pDNA structure integrity and safety. 3D printed gene-activated scaffolds (GAS) mediated HEK293 transfection in vitro and effective synthesis of model EGFP protein in vivo, thereby allowing the implementation of the developed GAS in future tissue engineering applications.

6.
Pharmaceutics ; 14(6)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35745846

RESUMO

Levofloxacin (LFX) is a highly effective anti-tuberculosis drug with a pronounced bactericidal activity against Mycobacterium tuberculosis (Mtb). In this work, an "organic solvent-free" approach has been used for the development of polylactic-co-glycolic acid (PLGA) microparticles and scaffolds containing LFX at a therapeutically significant concentration, providing for its sustained release. To achieve the target, both nonpolar supercritical carbon dioxide and polar supercritical trifluoromethane have been used. By changing the composition, surface morphology, size, and internal structure of the polymer carriers, one can control the kinetics of the LFX release into phosphate buffered saline solutions and physiological media, providing for its acceptable burst and desirable concentration in the prolonged phase. The biocompatibility and bactericidal efficacy of PLGA/LFX carriers assessed both in vitro (against Mtb phagocytosed by macrophages) and in vivo (against inbred BALB/c mice aerogenically infected with Mtb) demonstrated their anti-tuberculosis activity comparable with that of the standard daily intragastric levofloxacin administration. These results make it possible to consider the developed compositions as a promising candidate for anti-tuberculosis control release formulations providing for the further evaluation of their activity against Mtb and their metabolism in vivo over long periods of tuberculosis infection.

7.
Int J Comput Assist Radiol Surg ; 16(12): 2225-2234, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34625871

RESUMO

PURPOSE: Nowadays, cheilorhinoseptoplasty is one of the most efficient methods of cleft lip primary surgical treatment eliminating both functional and esthetic issues. In this work, we have proposed, developed, and experimentally tested a new thermography-based algorithm for studying the efficiency and symmetry of nasal breathing prior to and after the surgery. METHODS: To investigate and analyze the external respiration function of an infant with unilateral cleft lip after surgical respiration symmetry restoration followed by anatomically shaped postoperative endonasal retainer installation, we have applied contactless thermal imaging in real time. RESULTS: The developed algorithm enables effective analysis of the respiratory function in infants before and after the surgery. Its combination with applied surgical technique experimentally demonstrated the potential of this approach for improving further the efficiency and symmetry of the airflows through the patient's nasal passages after the primary cheilorhinoseptoplasty. CONCLUSIONS: The results of our study constitute a novel and promising avenue of investigation into the breathing function in infants and young children prior to and after their surgery for unilateral cleft lip. The adaptation of our technique to the conditions of a pediatric hospital will make it a safe and informative tool for noninvasive diagnosing the respiratory function in infants in the early postoperative period.


Assuntos
Fenda Labial , Criança , Pré-Escolar , Fenda Labial/diagnóstico , Fenda Labial/cirurgia , Humanos , Lactente , Nariz/cirurgia , Período Pós-Operatório , Respiração , Termografia , Resultado do Tratamento
8.
Polymers (Basel) ; 13(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806130

RESUMO

In this study, the nanoscale transformation of the polylactic-co-glycolic acid (PLGA) internal structure, before and after its supercritical carbon dioxide (sc-CO2) swelling and plasticization, followed by foaming after a CO2 pressure drop, was studied by small-angle X-ray scattering (SAXS) for the first time. A comparative analysis of the internal structure data and porosity measurements for PLGA scaffolds, produced by sc-CO2 processing, on a scale ranging from 0.02 to 1000 µm, was performed by SAXS, helium pycnometry (HP), mercury intrusion porosimetry (MIP) and both "lab-source" and synchrotron X-ray microtomography (micro-CT). This approach opens up possibilities for the wide-scale evaluation, computer modeling, and prediction of the physical and mechanical properties of PLGA scaffolds, as well as their biodegradation behavior in the body. Hence, this study targets optimizing the process parameters of PLGA scaffold fabrication for specific biomedical applications.

9.
ACS Biomater Sci Eng ; 6(10): 5744-5757, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33320574

RESUMO

In this study, we prepared hydrogel scaffolds for tissue engineering by computer-assisted extrusion three-dimensional (3D) printing with photocured (λ = 445 nm) hyaluronic acid glycidyl methacrylate (HAGM). The developed product was compared with the polylactic-co-glycolic acid (PLGA) scaffolds generated by means of the original antisolvent 3D printing methodology. The cytotoxicity and cytocompatibility of the scaffolds were analyzed in vitro by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tests, flow cytometry, and scanning electron microscopy. Anti-inflammatory and proangiogenic properties of the scaffolds were evaluated in the dorsal skinfold chamber mouse model by means of intravital fluorescence microscopy, histology, and immunohistochemistry throughout an observation period of 14 days. In vitro, none of the scaffolds revealed cytotoxicity on days 1, 2, and 5 after seeding with umbilical cord-derived multipotent stromal cells, and the primary cell adhesion to the surface of HAGM scaffolds was low. In vivo, implanted HAGM scaffolds showed enhanced vascularization and host tissue ingrowth, and the inflammatory response to them was less pronounced compared with PLGA scaffolds. The results indicate excellent biocompatibility and vascularization capacity of the developed 3D printed HAGM scaffolds and position them as strong candidates for advanced tissue engineering applications.


Assuntos
Hidrogéis , Engenharia Tecidual , Adesivos , Animais , Anti-Inflamatórios , Compostos de Epóxi , Ácido Hialurônico , Metacrilatos , Camundongos , Impressão Tridimensional , Alicerces Teciduais
10.
Int J Bioprint ; 6(3): 275, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33088987

RESUMO

The aim of the study was the development of three-dimensional (3D) printed gene-activated implants based on octacalcium phosphate (OCP) and plasmid DNA encoding VEGFA. The first objective of the present work involved design and fabrication of gene-activated bone substitutes based on the OCP and plasmid DNA with VEGFA gene using 3D printing approach of ceramic constructs, providing the control of its architectonics compliance to the initial digital models. X-ray diffraction, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and compressive strength analyses were applied to investigate the chemical composition, microstructure, and mechanical properties of the experimental samples. The biodegradation rate and the efficacy of plasmid DNA delivery in vivo were assessed during standard tests with subcutaneous implantation to rodents in the next stage. The final part of the study involved substitution of segmental tibia and mandibular defects in adult pigs with 3D printed gene-activated implants. Biodegradation, osteointegration, and effectiveness of a reparative osteogenesis were evaluated with computerized tomography, SEM, and a histological examination. The combination of gene therapy and 3D printed implants manifested the significant clinical potential for effective bone regeneration in large/critical size defect cases.

11.
J Biomed Mater Res A ; 105(1): 104-109, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27543196

RESUMO

We proposed a novel method of generation of bioresorbable polymeric scaffolds with specified architectonics for tissue engineering using extrusion three-dimensional (3D) printing with solutions of polylactoglycolide in tetraglycol with their subsequent solidifying in aqueous medium. On the basis of 3D computer models, we obtained the matrix structures with interconnected system of pores ranging in size from 0.5 to 500 µm. The results of in vitro studies using cultures of line NIH 3Т3 mouse fibroblasts, floating islet cultures of newborn rabbit pancreas, and mesenchymal stem cells of human adipose tissue demonstrated the absence of cytotoxicity and good adhesive properties of scaffolds in regard to the cell cultures chosen. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 104-109, 2017.


Assuntos
Fibroblastos/metabolismo , Ilhotas Pancreáticas/metabolismo , Ácido Láctico/química , Teste de Materiais , Ácido Poliglicólico/química , Impressão Tridimensional , Alicerces Teciduais/química , Animais , Fibroblastos/citologia , Ilhotas Pancreáticas/citologia , Camundongos , Células NIH 3T3 , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Coelhos
12.
Beilstein J Nanotechnol ; 7: 1794-1799, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28144529

RESUMO

We demonstrate a relatively simple route for three-dimensional (3D) printing of complex-shaped biocompatible structures based on sodium alginate and calcium phosphate (CP) for bone tissue engineering. The fabrication of 3D composite structures was performed through the synthesis of inorganic particles within a biopolymer macromolecular network during 3D printing process. The formation of a new CP phase was studied through X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. Both the phase composition and the diameter of the CP particles depend on the concentration of a liquid component (i.e., the "ink"). The 3D printed structures were fabricated and found to have large interconnected porous systems (mean diameter ≈800 µm) and were found to possess compressive strengths from 0.45 to 1.0 MPa. This new approach can be effectively applied for fabrication of biocompatible scaffolds for bone tissue engineering constructions.

13.
Environ Geochem Health ; 38(6): 1255-1270, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26700315

RESUMO

Rocks eaten by wild animals on the Bolshoy Shanduyskiy kudur in the Sikhote-Alin region (Russian Federation) are zeolite-clay mineral complexes-products of weathering of zeolitized vitric tuffs of rhyolite composition, deposited in aqueous medium within the volcanic caldera of about 55 million years ago. By composition of rock-forming oxides, the tuffs refer to high-potassium calc-alkaline series. In trace elements of most favorite kudurites of the Bolshoy Shanduyskiy kudur, there are significantly increased contents of most of rare earth elements (2-5 times in comparison with surrounding rocks). The results of our analysis of geological and geochemical data on kudurs and kudurites in another part of the Sikhote-Alin, as well as on other regions of the world (particularly, in Africa and Indonesia), taking into account new data on the prevalence of rare earth elements in living matter and their medical and biological properties, enable us to consider the version of causal connection of the geophagy with rare earth elements.


Assuntos
Metais Terras Raras , Minerais/análise , Pica , África , Animais , Federação Russa , Oligoelementos/análise
14.
Artigo em Inglês | MEDLINE | ID: mdl-26106596

RESUMO

Biocompatible calcium phosphate ceramic grafts are able of supporting new bone formation in appropriate environment. The major limitation of these materials usage for medical implants is the absence of accessible methods for their patient-specific fabrication. 3D printing methodology is an excellent approach to overcome the limitation supporting effective and fast fabrication of individual complex bone substitutes. Here, we proposed a relatively simple route for 3D printing of octacalcium phosphates (OCP) in complexly shaped structures by the combination of inkjet printing with post-treatment methodology. The printed OCP blocks were further implanted in the developed cranial bone defect followed by histological evaluation. The obtained result confirmed the potential of the developed OCP bone substitutes, which allowed 2.5-time reducing of defect's diameter at 6.5 months in a region where native bone repair is extremely inefficient.

15.
Opt Express ; 21(25): 31029-35, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24514677

RESUMO

A technique to fabricate electrically conductive all-polymer 3D microstructures is reported. Superior conductivity, high spatial resolution and three-dimensionality are achieved by successive application of two-photon polymerization and in situ oxidative polymerization to a bi-component formulation, containing a photosensitive host matrix and an intrinsically conductive polymer precursor. By using polyethylene glycol diacrylate (PEG-DA) and 3,4-ethylenedioxythiophene (EDOT), the conductivity of 0.04 S/cm is reached, which is the highest value for the two-photon polymerized all-polymer microstructures to date. The measured electrical conductivity dependency on the EDOT concentration indicates percolation phenomenon and a three-dimensional nature of the conductive pathways. Tunable conductivity, biocompatibility, and environmental stability are the characteristics offered by PEG-DA/EDOT blends which can be employed in biomedicine, MEMS, microfluidics, and sensorics.


Assuntos
Fótons , Polímeros/química , Polímeros/efeitos da radiação , Condutividade Elétrica , Luz , Teste de Materiais
16.
Acta Biomater ; 5(6): 2063-71, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19362063

RESUMO

For optimal bone regeneration, scaffolds need to fit anatomically into the requisite bone defects and, ideally, augment cell growth and differentiation. In this study we evaluated novel computationally designed surface selective laser sintering (SSLS) scaffolds for their biocompatibility as templates, in vitro and in vivo, for human fetal femur-derived cell viability, growth and osteogenesis. Fetal femur-derived cells were successfully cultured on SSLS-poly(d,l)-lactic acid (SSLS-PLA) scaffolds expressing alkaline phosphatase activity after 7days. Cell proliferation, ingrowth, Alcian blue/Sirius red and type I collagen positive staining of matrix deposition were observed for fetal femur-derived cells cultured on SSLS-PLA scaffolds in vitro and in vivo. SSLS-PLA scaffolds and SSLS-PLA scaffolds seeded with fetal femur-derived cells implanted into a murine critical-sized femur segmental defect model aided the regeneration of the bone defect. SSLS techniques allow fabrication of biocompatible/biodegradable scaffolds, computationally designed to fit any defect, providing a template for cell osteogenesis in vitro and in vivo.


Assuntos
Materiais Biocompatíveis/química , Fêmur/citologia , Fêmur/embriologia , Ácido Láctico/química , Osteoblastos/citologia , Osteogênese/fisiologia , Polímeros/química , Engenharia Tecidual/métodos , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Estudos de Viabilidade , Temperatura Alta , Humanos , Lasers , Teste de Materiais , Osteoblastos/fisiologia , Poliésteres , Propriedades de Superfície
17.
Acta Biomater ; 4(6): 1603-10, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18595787

RESUMO

The fabrication of three-dimensional (3-D) structures using computer-controlled ultraviolet (UV) photopolymerization of acrylates (laser stereolithography) often results in the trapping of residual unreacted monomer and initiator. These residuals can leach from the finished structure and affect the biological response of cells and tissues. Thus the potential applications of these structures for tissue engineering have not been fully realized. In this paper we demonstrate that conventional post-lithography treatments followed by processing in the environmentally benign solvent, supercritical carbon dioxide (scCO(2)), dramatically increased biocompatibility. The scCO(2) processing of pure polyacrylate and polyacrylate/hydroxyapatite composite structures extracts residuals from all structures including those that had received full conventional post-lithography treatment (acetone washing/UV drying). Human osteoblast cells seeded on the extracted surfaces of these structures demonstrated increased cell attachment and proliferation on the scCO(2)-treated materials.


Assuntos
Materiais Biocompatíveis/química , Cromatografia com Fluido Supercrítico/métodos , Durapatita/química , Polímeros/química , Dióxido de Carbono/química , Adesão Celular , Linhagem Celular , Cromatografia Gasosa/métodos , Humanos , Técnicas In Vitro , Lasers , Microscopia Eletrônica de Varredura/métodos , Modelos Químicos , Osteoblastos/metabolismo , Solventes/química , Raios Ultravioleta
18.
Philos Trans A Math Phys Eng Sci ; 364(1838): 249-61, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17464360

RESUMO

This paper describes recent progress made in the use of high pressure or supercritical fluids to process polymers into three-dimensional tissue engineering scaffolds. Three current examples are highlighted: foaming of acrylates for use in cartilage tissue engineering; plasticization and encapsulation of bioactive species into biodegradable polyesters for bone tissue engineering; and a novel laser sintering process used to fabricate three-dimensional biodegradable polyester structures from particles prepared via a supercritical route.


Assuntos
Materiais Biocompatíveis/química , Dióxido de Carbono/química , Cromatografia com Fluido Supercrítico/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Polímeros/química , Conformação Molecular , Pressão
20.
Acta Astronaut ; 50(10): 641-51, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12053939

RESUMO

Body hydration decreases significantly during hypokinesia (HK) (diminished movement), but little is known about the effect of fluid and salt supplements (FSS) on body hydration during HK. The aim of this study was to measure the effect of FSS on body hydration during HK. Studies were done during 30 days pre HK period and 364 days HK period. Thirty male athletes aged 24.5 +/- 6.6 yr were chosen as subjects. They were equally divided into three groups: unsupplemented ambulatory control subjects (UACS), unsupplemented hypokinetic subjects (UHKS) and supplemented hypokinetic subjects (SHKS). Hypokinetic subjects were limited to an average walking distance of 0.7 km day-1. The SHKS group took daily 30 ml of water/kg body weight and 0.1 g of sodium chloride (NaCl)/kg body weight. Control subjects experienced no changes in their professional training and routine daily activities. Plasma volume (PV), urinary and plasma sodium (Na) and potassium (K), plasma osmolality, plasma protein, whole blood hemoglobin (Hb) and hematocrit (Hct), plasma renin activity (PRA) plasma aldosterone (PA) levels, physical characteristics, food and fluid intakes were measured. Plasma osmolality, plasma protein, urinary and plasma Na and K, whole blood Hct and Hb, PRA and PA levels decreased significantly (p < or = 0.01), while PV and body weight increased significantly (p < or = 0.01) in the SHKS group when compared with the UHKS group and did not change when compared with the UACS group. Plasma osmolality, plasma protein, urinary and plasma Na and K, PRA and PA, whole blood Hb and Hct levels increased significantly (p < or = 0.01), while PV body weight, food and fluid intakes decreased significantly (p < or = 0.01) in UHKS group when compared with the SHKS and UACS groups. The measured parameters did not change in the UACS group when compared with their baseline control values. It was shown that during HK body hydration decreased significantly, while during HK and FSS body hydration increased significantly. It was concluded that daily intake of FSS prevents the decrease of PV and blunts the increase of activity of the PRA and PA during prolonged HK.


Assuntos
Hidratação , Hipocinesia/tratamento farmacológico , Volume Plasmático/efeitos dos fármacos , Potássio/metabolismo , Cloreto de Sódio/uso terapêutico , Sódio/metabolismo , Adulto , Aldosterona/sangue , Proteínas Sanguíneas/metabolismo , Índice de Massa Corporal , Hematócrito , Hemoglobinas , Humanos , Hipocinesia/metabolismo , Masculino , Concentração Osmolar , Volume Plasmático/fisiologia , Potássio/sangue , Potássio/urina , Renina/sangue , Corrida , Sódio/sangue , Sódio/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...