Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsc Microanal ; 30(1): 49-58, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38232229

RESUMO

In this paper, the capability for quantifying the composition of Ba-doped SrTiO layers from an atom probe measurement was explored. Rutherford backscattering spectrometry and time-of-flight/energy elastic recoil detection were used to benchmark the composition where the amount of titanium was intentionally varied between samples. The atom probe results showed a significant divergence from the benchmarked composition. The cause was shown to be a significant oxygen underestimation (≳14 at%). The ratio between oxygen and titanium for the samples varied between 2.6 and 12.7, while those measured by atom probe tomography were lower and covered a narrower range between 1.4 and 1.7. This difference was found to be associated with the oxygen and titanium predominantly field evaporating together as a molecular ion. The evaporation fields and bonding chemistries determined showed inconsistencies for explaining the oxygen underestimation and ion species measured. The measured ion charge state was in excellent agreement with that predicted by the Kingham postionization theory. Only by considering the measured ion species, their evaporation fields, the coordination chemistry, the analysis conditions, and some recently reported density functional theory modeling for oxide field emission were we able to postulate a field emission and oxygen neutral desorption process that may explain our results.

2.
Nanomaterials (Basel) ; 10(8)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796703

RESUMO

The ability to develop ferroelectric materials using binary oxides is critical to enable novel low-power, high-density non-volatile memory and fast switching logic. The discovery of ferroelectricity in hafnia-based thin films, has focused the hopes of the community on this class of materials to overcome the existing problems of perovskite-based integrated ferroelectrics. However, both the control of ferroelectricity in doped-HfO2 and the direct characterization at the nanoscale of ferroelectric phenomena, are increasingly difficult to achieve. The main limitations are imposed by the inherent intertwining of ferroelectric and dielectric properties, the role of strain, interfaces and electric field-mediated phase, and polarization changes. In this work, using Si-doped HfO2 as a material system, we performed a correlative study with four scanning probe techniques for the local sensing of intrinsic ferroelectricity on the oxide surface. Putting each technique in perspective, we demonstrated that different origins of spatially resolved contrast can be obtained, thus highlighting possible crosstalk not originated by a genuine ferroelectric response. By leveraging the strength of each method, we showed how intrinsic processes in ultrathin dielectrics, i.e., electronic leakage, existence and generation of energy states, charge trapping (de-trapping) phenomena, and electrochemical effects, can influence the sensed response. We then proceeded to initiate hysteresis loops by means of tip-induced spectroscopic cycling (i.e., "wake-up"), thus observing the onset of oxide degradation processes associated with this step. Finally, direct piezoelectric effects were studied using the high pressure resulting from the probe's confinement, noticing the absence of a net time-invariant piezo-generated charge. Our results are critical in providing a general framework of interpretation for multiple nanoscale processes impacting ferroelectricity in doped-hafnia and strategies for sensing it.

3.
ACS Appl Mater Interfaces ; 11(37): 34385-34393, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31449744

RESUMO

The recent demonstration of ferroelectricity in ultrathin HfO2 has kickstarted a new wave of research into this material. HfO2 in the orthorhombic phase can be considered the first and only truly nanoscale ferroelectric material that is compatible with silicon-based nanoelectronics applications. In this article, we demonstrate the ferroelectric control of the magnetic properties of cobalt deposited on ultrathin aluminum-doped, atomic layer deposition-grown HfO2 (tHfO2 = 6.5 nm). The ferroelectric effect is shown to control the shape of the magnetic hysteresis, quantified here by the magnetic switching energy. Furthermore, the magnetic properties such as the remanence are modulated by up to 41%. We show that this modulation does not only correlate with the charge accumulation at the interface but also shows an additional component associated with the ferroelectric polarization switching. An in-depth analysis using first order reversal curves shows that the coercive and interaction field distributions of cobalt can be modulated up to, respectively, 5.8% and 10.5% with the ferroelectric polarization reversal.

4.
Nanoscale ; 10(18): 8471-8476, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29691544

RESUMO

After the successful introduction as a replacement for the SiO2 gate dielectric in metal-oxide-semiconductor field-effect transistors, HfO2 is currently one of the most studied binary oxide systems with ubiquitous applications in nanoelectronics. For years, the interest of microelectronic downscaling has focused on tuning the dielectric constant of HfO2, particularly for monoclinic and tetragonal phases. Recently, Müller et al. showed the occurrence of ferroelectricity in orthorhombic HfO2 obtained by doping with Si, Y or Al which can alter the centrosymmetric atomic structure of the elemental binary oxide. Ferroelectric HfO2 is characterized by a permanent electric dipole that can be reversed through the application of an external voltage. As all ferroelectrics, a strong coupling between the polarization and the deformation exists, a property which has allowed the development of piezoelectric sensors and actuators. However, ferroelectrics also show a coupling between the electrical polarization and the deformation gradient, defined as flexoelectricity. In essence, the free charge inside the material redistributes in response to strain gradients, inducing a net non-zero dipole moment, eventually reaching polarization reversal by the sole application of a mechanical stress. Here we show the flexoelectric effect in Al-doped hafnium oxide, using the tip of an atomic force microscope (AFM) to maximize the strain gradient at the nanometre scale. Our analysis indicates that pure mechanical force can be used for the local polarization control of sub-100 nm domains. Due to the full compatibility of HfO2 in the modern CMOS process, the discovery of flexoelectricity in hafnia paves the way for (1) nanoscopic memory bits that can be written mechanically and read electrically, (2) tip-induced reprogrammable ferroelectric-based logic and (3) electromechanical transducers.

5.
ACS Appl Mater Interfaces ; 8(39): 26119-26125, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27598509

RESUMO

Atomic layer deposition of ruthenium is studied as a barrierless metallization solution for future sub-10 nm interconnect technology nodes. We demonstrate the void-free filling in sub-10 nm wide single damascene lines using an ALD process in combination with 2.5 Å of ALD TiN interface and postdeposition annealing. At such small dimensions, the ruthenium effective resistance depends less on the scaling than that of Cu/barrier systems. Ruthenium effective resistance potentially crosses the Cu curve at 14 and 10 nm according to the semiempirical interconnect resistance model for advanced technology nodes. These extremely scaled ruthenium lines show excellent electromigration behavior. Time-dependent dielectric breakdown measurements reveal negligible ruthenium ion drift into low-κ dielectrics up to 200 °C, demonstrating that ruthenium can be used as a barrierless metallization in interconnects. These results indicate that ruthenium is highly promising as a replacement to Cu as the metallization solution for future technology nodes.

6.
ACS Appl Mater Interfaces ; 6(22): 19744-51, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25365475

RESUMO

HfO2 based ferroelectrics are lead-free, simple binary oxides with nonperovskite structure and low permittivity. They just recently started attracting attention of theoretical groups in the fields of ferroelectric memories and electrostatic supercapacitors. A modified approach of harmonic analysis is introduced for temperature-dependent studies of the field cycling behavior and the underlying defect mechanisms. Activation energies for wake-up and fatigue are extracted. Notably, all values are about 100 meV, which is 1 order of magnitude lower than for conventional ferroelectrics like lead zirconate titanate (PZT). This difference is mainly atttributed to the one to two orders of magnitude higher electric fields used for cycling and to the different surface to volume ratios between the 10 nm thin films in this study and the bulk samples of former measurements or simulations. Moreover, a new, analog-like split-up effect of switching peaks by field cycling is discovered and is explained by a network model based on memcapacitive behavior as a result of defect redistribution.

7.
Langmuir ; 20(4): 1425-9, 2004 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-15803729

RESUMO

Monoliths of iron oxide-silica aerogel nanocomposites have been synthesized using a novel synthesis route which consists of impregnating silica wet gels with anhydrous iron(II) precursors followed by ethanol supercritical drying of the gels. The process yields aerogels exhibiting high porosity, large surface areas (approximately 900 m2/g), rather low densities (approximately 0.6 g/cm3), and a homogeneous distribution of single-phase maghemite, gamma-Fe2O3, nanoparticles with average sizes in the 7-8 nm range. Remarkably, the gamma-Fe2O3 nanoparticles are obtained in the as-dried state without the need of postannealing. The nanoparticles are mostly superparamagnetic at room temperature but become blocked in a ferrimagnetic state at lower temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...