Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genet ; 19(1): 93, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30340455

RESUMO

BACKGROUND: Pod constriction is an important descriptive and agronomic trait of peanut. For the in-shell Virginia marketing-type, this trait has commercial importance as well, since deeply constricted pods have a tendency to break, which makes them unmarketable. Classical genetic studies have indicated that pod constriction in peanut is controlled by one to four genes, depending on the genetic background. In all of those studies, pod constriction was evaluated visually as opposed to quantitatively. Here, we examined the genetic nature of this trait in the Virginia-type background. Our study involved 195 recombinant inbred lines (F7RILs) derived from two closely related cultivars that differ in their degree of pod constriction. Pod constriction was evaluated visually and quantitatively in terms of the pod constriction index (PCI), calculated as the average ratio between the pod's waist and shoulders. RESULTS: ANOVA and genetic parameters for PCI among the F7RILs in three blocks showed very significant genotypic effect (p(F) < 0.0001) and high heritability and genetic gain estimates (0.84 and 0.52, respectively). The mean PCI values of the different RILs had a bimodal distribution with an approximate 1:1 ratio between the two curves. Pod constriction was also determined visually (VPC) by grading the degree of each RIL as 'deep' or 'slight'. The χ2 test was found to not be significantly different from a 1:1 ratio (p = 0.79) as well. SNP-array-based technology was used to map this trait in the RIL population. A major locus for the pod constriction trait was found on chromosome B7, between B07_120,287,958 and B07_120,699,791, and the best-linked SNP explained 32% of the total variation within that region. Some discrepancy was found between the SNPs original location and the genetic mapping of the trait. CONCLUSION: The trait distribution and mapping, together with data from F1 and F2 generations indicate that in this background the pod constriction is controlled by a major recessive gene. The identity of loci controlling the pod constriction trait will allow breeders to apply marker-assisted breeding approaches to shift allelic frequencies towards a slighter pod constriction and will facilitate future effort for map-based gene cloning.


Assuntos
Arachis/genética , Cromossomos de Plantas , Mapeamento Cromossômico , Genótipo , Funções Verossimilhança , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Virginia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...