Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 18(4): 1130-9, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17329570

RESUMO

Wnt proteins are required for induction of nephrons in mouse metanephric kidneys, but the downstream pathways that mediate tubule induction and epithelial differentiation have remained obscure. The intracellular mechanisms by which Wnt signaling mediates nephron induction in embryonic kidney mesenchymes were studied. First is shown that transient exposure of isolated kidney mesenchymes to structurally different glycogen synthase kinase-3 (GSK3) inhibitors lithium or 6-bromoindirubin-3'-oxime results in abundant epithelial differentiation and full segregation of nephrons. Shown further by mice with genetically disrupted ureteric bud or Wolffian duct development is that this nephrogenic competence arises independent of the influence of Wolffian duct-derived epithelia. Analysis of the intracellular signaling cascades downstream of GSK3 inhibition revealed stabilization of beta-catenin and upregulation of Lef1 and Tcf1, both events that are associated with the active canonical Wnt signaling. Last, genetic evidence that metanephric mesenchyme-specific stabilization of beta-catenin is sufficient to induce nephron differentiation in isolated kidney mesenchymes, similar to that induced by GSK3 inhibitors, is provided. These data show that activation of canonical Wnt pathway is sufficient to induce nephrogenesis and suggest that this pathway mediates the nephron induction in murine kidney mesenchymes.


Assuntos
Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Rim/embriologia , Mesoderma/citologia , Néfrons/embriologia , beta Catenina/metabolismo , Animais , Diferenciação Celular , Fator 1 de Ligação ao Facilitador Linfoide/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar , Proteínas Wnt/fisiologia
2.
Oncogene ; 23(44): 7297-309, 2004 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-15326489

RESUMO

The receptor tyrosine kinase RET is alternatively spliced to yield two main isoforms, RET9 and RET51, which differ in their carboxyl terminal. Activated RET induces different biological responses such as morphological transformation, neurite outgrowth, proliferation, cell migration and branching. The two isoforms have been suggested to have separate intracellular signaling pathways and different roles in mouse development. Here we show that both isoforms are able to induce cell scattering of SK-N-MC neuroepithelioma cell line and branching tubule formation in MDCK cell line. However, the Y1062F mutation, which abrogates the transforming activity of both activated RET isoforms in NIH3T3 cells, does not abolish scattering and branching morphogenesis of RET51, whereas impairs these biological effects of RET9. The GDNF-induced biological effects of RET51 are inhibited by the simultaneous abrogation of both Tyr1062 and Tyr1096 docking sites. Thus, Tyr1096 may substitute the functions of Tyr1062. GRB2 is the only known adaptor protein binding to Tyr1096. Dominant-negative GRB2 expressed in MDCK cells together with RET9 or RET51 significantly reduces branching. Therefore, GRB2 is necessary for RET-mediated branching of MDCK cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Células Epiteliais/citologia , Neurônios/citologia , Proteínas Oncogênicas/metabolismo , Proteínas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Tirosina , Células 3T3 , Sequência de Aminoácidos , Animais , Sequência de Bases , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/fisiologia , Clonagem Molecular , Primers do DNA , Cães , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Proteína Adaptadora GRB2 , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Rim , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fatores de Crescimento Neural/farmacologia , Neuritos/ultraestrutura , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Proteínas Oncogênicas/genética , Isoformas de Proteínas/metabolismo , Proteínas/genética , Proteínas Proto-Oncogênicas c-ret , Receptores Proteína Tirosina Quinases/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno
3.
Mol Endocrinol ; 18(4): 1004-17, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-14715928

RESUMO

Gain-of-function mutations of ret receptor tyrosine kinase, the signaling receptor for glial cell line-derived neurotrophic factor, cause sporadic thyroid and adrenal malignancies as well as endocrine cancer syndromes, such as multiple endocrine neoplasia types 2A and 2B (MEN 2A and MEN 2B) and familial medullary thyroid carcinoma. Loss-of-function mutations of ret cause Hirschsprung's disease (HSCR) or colonic aganglionosis. In 20-30% of families with a mutation at residues 609, 611, 618, or 620 of RET, MEN 2A and familial medullary thyroid carcinoma cosegregate with HSCR. These mutations constitutively activate RET due to aberrant disulfide homodimerization and diminish the level of RET at the plasma membrane. It is not known how these mutations simultaneously lead to both gain- and loss-of-function RET-associated diseases. We provide an explanation for the dual phenotypic Janus mutation at Cys620 of RET. In Madin-Darby canine kidney (MDCK) cells, the Janus mutation impairs the glial cell line-derived neurotrophic factor-induced effects of RET on cell migration, differentiation, and survival but simultaneously promotes rapid cell proliferation.


Assuntos
Doença de Hirschsprung/genética , Neoplasia Endócrina Múltipla Tipo 2a/genética , Neoplasia Endócrina Múltipla Tipo 2b/genética , Proteínas Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Animais , Dimerização , Cães , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Doença de Hirschsprung/metabolismo , Neoplasia Endócrina Múltipla Tipo 2a/metabolismo , Neoplasia Endócrina Múltipla Tipo 2b/metabolismo , Fatores de Crescimento Neural/metabolismo , Proteínas Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-ret , Receptores Proteína Tirosina Quinases/metabolismo
4.
J Cell Biol ; 161(1): 119-29, 2003 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-12682085

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) and hepatocyte growth factor (HGF) are multifunctional signaling molecules in embryogenesis. HGF binds to and activates Met receptor tyrosine kinase. The signaling receptor complex for GDNF typically includes both GDNF family receptor alpha1 (GFRalpha1) and Ret receptor tyrosine kinase. GDNF can also signal independently of Ret via GFRalpha1, although the mechanism has remained unclear. We now show that GDNF partially restores ureteric branching morphogenesis in ret-deficient mice with severe renal hypodysplasia. The mechanism of Ret-independent effect of GDNF was therefore studied by the MDCK cell model. In MDCK cells expressing GFRalpha1 but no Ret, GDNF stimulates branching but not chemotactic migration, whereas both branching and chemotaxis are promoted by GDNF in the cells coexpressing Ret and GFRalpha1, mimicking HGF/Met responses in wild-type MDCK cells. Indeed, GDNF induces Met phosphorylation in several ret-deficient/GFRalpha1-positive and GFRalpha1/Ret-coexpressing cell lines. However, GDNF does not immunoprecipite Met, making a direct interaction between GDNF and Met highly improbable. Met activation is mediated by Src family kinases. The GDNF-induced branching of MDCK cells requires Src activation, whereas the HGF-induced branching does not. Our data show a mechanism for the GDNF-induced branching morphogenesis in non-Ret signaling.


Assuntos
Proteínas de Drosophila , Rim/anormalidades , Fatores de Crescimento Neural/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Ureter/anormalidades , Urotélio/anormalidades , Quinases da Família src/metabolismo , Animais , Padronização Corporal/efeitos dos fármacos , Padronização Corporal/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/genética , Cães , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Rim/citologia , Rim/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-ret , Receptores Proteína Tirosina Quinases/deficiência , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transfecção , Células Tumorais Cultivadas , Ureter/citologia , Ureter/metabolismo , Urotélio/efeitos dos fármacos , Urotélio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...