Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-25679632

RESUMO

We describe formation of defect-colloidal superstructures induced by microspheres with normal surface anchoring dispersed in chiral nematic liquid crystals in confinement-unwound homeotropic cells. Using three-dimensional nonlinear optical imaging of the director field, we demonstrate that some of the induced defects have nonsingular solitonic nature while others are singular point and line topological defects. The common director structures induced by individual microspheres have dipolar symmetry. These topological dipoles are formed by the particle and a hyperbolic point defect (or small disclination loop) of elementary hedgehog charge opposite to that of a sphere with perpendicular boundary conditions, which in cells with thickness over equilibrium cholesteric pitch ratio approaching unity are additionally interspaced by a looped double-twist cylinder of continuous director deformations. The long-range elastic interactions are probed by holographic optical tweezers and videomicroscopy, providing insights to the physical underpinnings behind self-assembled colloidal structures entangled by twisted solitons. Computer-simulated field and defect configurations induced by the colloidal particles and their assemblies, which are obtained by numerically minimizing the Landau-de Gennes free energy, are in agreement with the experimental findings.

2.
Sci Rep ; 4: 7337, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25477195

RESUMO

Metastable configurations formed by defects, inclusions, elastic deformations and topological solitons in liquid crystals are a promising choice for building photonic crystals and metamaterials with a potential for new optical applications. Local optical modification of the director or introduction of colloidal inclusions into a moderately chiral nematic liquid crystal confined to a homeotropic cell creates localized multistable chiral solitons. Here we induce solitons that "dress" the dispersed spherical particles treated for tangential degenerate boundary conditions, and perform controlled switching of their state using focused optical beams. Two optically switchable distinct metastable states, toron and hopfion, bound to colloidal spheres into structures with different topological charges are investigated. Their structures are examined using Q-tensor based numerical simulations and compared to the profiles reconstructed from the experiments. A topological explanation of observed multistability is constructed.

3.
Artigo em Inglês | MEDLINE | ID: mdl-25019708

RESUMO

We describe dipolar nematic colloids comprising mutually bound solid microspheres, three-dimensional skyrmions, and point defects in a molecular alignment field of chiral nematic liquid crystals. Nonlinear optical imaging and numerical modeling based on minimization of Landau-de Gennes free energy reveal that the particle-induced skyrmions resemble torons and hopfions, while matching surface boundary conditions at the interfaces of liquid crystal and colloidal spheres. Laser tweezers and videomicroscopy reveal that the skyrmion-colloidal hybrids exhibit purely repulsive elastic pair interactions in the case of parallel dipoles and an unexpected reversal of interaction forces from repulsive to attractive as the center-to-center distance decreases for antiparallel dipoles. The ensuing elastic self-assembly gives rise to colloidal chains of antiparallel dipoles with particles entangled by skyrmions.


Assuntos
Coloides/química , Anisotropia , Simulação por Computador , Elasticidade , Imageamento Tridimensional , Microscopia de Vídeo , Modelos Químicos , Dinâmica não Linear , Imagem Óptica , Pinças Ópticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...