Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(41): 9357-9364, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37820389

RESUMO

We study structural and morphological transformations caused by multipulse femtosecond-laser exposure of Bridgman-grown ϵ-phase GaSe crystals, a van der Waals semiconductor promising for nonlinear optics and optoelectronics. We unveil, for the first time, the laser-driven self-organization regimes in GaSe allowing the formation of regular laser-induced periodic surface structures (LIPSSs) that originate from interference of the incident radiation and interface surface plasmon waves. LIPSSs formation causes transformation of the near-surface layer to amorphous Ga2Se3 at negligible oxidation levels, evidenced from comprehensive structural characterization. LIPSSs imprinted on both output crystal facets provide a 1.2-fold increase of the near-IR transmittance, while the ability to control local periodicity by processing parameters enables multilevel structural color marking of the crystal surface. Our studies highlight direct fs-laser patterning as a multipurpose application-ready technology for precise nanostructuring of promising van der Waals semiconductors, whose layered structure restricts application of common nanofabrication approaches.

2.
Opt Lett ; 47(19): 5080-5083, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181191

RESUMO

Laser patterning of thin films of materials is widely used for the fabrication of one-, two- and three-dimensional functional nanomaterials. Using structured laser beams with a complex structure of amplitude, phase, and polarization distributions allows one to significantly simplify and speed up the procedure of manufacturing nano- and microstructures with a complex shape, such as a spiral structure. Here, we demonstrate the use of vortex laser beams with a helical wavefront for the realization of spiral mass transfer in azopolymer films. The polarization sensitivity of this material allows us to demonstrate the formation of different three-dimensional structures in the case of linearly or circularly polarized vortex beams of different orders. The presented theoretical analysis shows that the profile of the fabricated structures is defined by the structure of the longitudinal component of the incident radiation, and thus can be easily controlled with the polarization state of the radiation without the need to change the amplitude-phase structure of the beam.

3.
Opt Lett ; 45(11): 3050-3053, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32479456

RESUMO

Here, we report on formation of nanoprotrusions on the surface of a bulk crystalline silicon wafer under femtosecond-laser ablation with a donut-shaped laser beam. By breaking circular symmetry of the irradiating donut-shaped fs-pulse beam, a switch in geometry of the formed surface nanoprotrusions from regular to chiral was demonstrated. The chirality of the obtained Si nanostructures was promoted with an asymmetry degree of the laser beam. An uneven helical flow of laser-melted Si caused by asymmetry of the initial intensity and temperature pattern on the laser-irradiated Si surface explains this phenomenon. Chirality of the formed protrusions was confirmed by visualizing cross-sectional cuts produced by focused ion beam milling as well as Raman activity of these structures probed by circularly polarized light with opposite handedness. Our results open a pathway towards easy-to-implement inexpensive fabrication of chiral all-dielectric nanostructures for advanced nanophotonic applications and sensing of chiral molecules.

4.
Opt Lett ; 45(6): 1334-1337, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32163959

RESUMO

Complex-shaped light fields with specially designed intensity, phase, and polarization distributions are highly demanded for various applications including optical tweezers, laser material processing, and lithography. Here, we propose a novel (to the best of our knowledge) optical element formed by the twisting of a conic surface, a twisted microaxicon, allowing us to controllably generate high-quality spiral-shaped intensity patterns. Performance of the proposed element was analyzed both analytically and numerically using ray approximation and the rigorous finite difference time domain (FDTD) solution of Maxwell's equation. The main geometric parameters, an apex cone angle and a degree of twisting, were considered to control and optimize the generated spiral-shaped intensity patterns. The three-dimensional structure of such a microaxicon cannot be described by an unambiguous height function; therefore, it has no diffraction analogue in the form of a thin optical element. Such an element can be produced via direct laser ablation of transparent targets with structured laser beams or direct laser writing via two-photon photopolymerization and can be used in various micro- and nano-optical applications.

5.
Sci Rep ; 9(1): 19750, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31874984

RESUMO

Interaction of complex-shaped light fields with specially designed plasmonic nanostructures gives rise to various intriguing optical phenomena like nanofocusing of surface waves, enhanced nonlinear optical response and appearance of specific low-loss modes, which can not be excited with ordinary Gaussian-shaped beams. Related complex-shaped nanostructures are commonly fabricated using rather expensive and time-consuming electron- and ion-beam lithography techniques limiting real-life applicability of such an approach. In this respect, plasmonic nanostructures designed to benefit from their excitation with complex-shaped light fields, as well as high-performing techniques allowing inexpensive and flexible fabrication of such structures, are of great demand for various applications. Here, we demonstrate a simple direct maskless laser-based approach for fabrication of back-reflector-coupled plasmonic nanorings arrays. The approach is based on delicate ablation of an upper metal film of a metal-insulator-metal (MIM) sandwich with donut-shaped laser pulses followed by argon ion-beam polishing. After being excited with a radially polarized beam, the MIM configuration of the nanorings permitted to realize efficient nanofocusing of constructively interfering plasmonic waves excited in the gap area between the nanoring and back-reflector mirror. For optimized MIM geometry excited by radially polarized CVB, substantial enhancement of the electromagnetic near-fields at the center of the ring within a single focal spot with the size of 0.37λ2 can be achieved, which is confirmed by Finite Difference Time Domain calculations, as well as by detection of 100-fold enhanced photoluminescent signal from adsorbed organic dye molecules. Simple large-scale and cost-efficient fabrication procedure offering also a freedom in the choice of materials to design MIM structures, along with remarkable optical and plasmonic characteristics of the produced structures make them promising for realization of various nanophotonic and biosensing platforms that utilize cylindrical vector beam as a pump source.

6.
Opt Express ; 27(13): 18484-18492, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31252791

RESUMO

We propose to analyze the polarization and phase states of laser beams using a fixed set of non-polarizing phase elements. The experimental implementation of the proposed method is based on the use of multi-order phase-diffractive optical elements (DOEs). The presence or absence of intensity maxima (information bits) corresponding to the numbers of diffraction orders allows an identification code (a codeword) to be obtained. The resulting codeword makes it possible to uniquely determine the order of the vortex singularity and the order of the cylindrical polarization of the laser beam in various combinations based on simple relations.

7.
Opt Lett ; 44(5): 1129-1132, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30821788

RESUMO

Low- and ultralow-energy tightly focused 200 fs, 515 nm donut-shaped laser pulses at 0.25 and 0.65 NA focusing were used for single-shot ablative pulse-energy scalable nanopatterning of 50 nm thick gold film and the following plasmonic excitation of dye monolayer photoluminescence (PL) in the fabricated nanostructures, respectively. The same pulses at much lower, non-ablative nanojoule energies, and the same focusing and linear, azimuthal, or radial polarizations provided efficient spectrally and symmetry-matched excitation of both localized and delocalized surface electromagnetic modes in the separate, ring-like through holes and their arrays in the film envisioned by our modeling, thus resulting in a polarization-sensitive yield of rhodamine 6G dye PL. The demonstrated consistency between the symmetries of the donut-shaped low-energy photo-exciting laser beam, its polarization state, and the donut-shaped gold nanostructures, produced by the same beam at high, ablative pulse energies, paves the way to smart, self-consistent nanofabrication and plasmonic sensing, when the structured light interacts with the consistently structured matter.

8.
Opt Express ; 27(2): 657-666, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30696148

RESUMO

We find a two-parameter family of astigmatic elliptical Gaussian (AEG) optical vortices, which are free space modes up to scale and rotation. We calculate total normalized orbital angular momentum of AEG vortices, which can be an integer, fractional and zero, and which is equal to the algebraic sum of two terms reflecting the contribution of the vortex and astigmatic components of the light field. In any transverse plane, such a beam has an isolated n-fold degenerate intensity null on the optical axis (an optical vortex) embedded into an elliptical Gaussian beam. In addition to the quadratic elliptical phase, a beam has the phase of a cylindrical lens rotated by an angle of 45 degrees with respect to the principal axes of the ellipse of the Gaussian beam intensity distribution. The degenerated central intensity null in these beams does not split it into n spatially separated intensity nulls, as is usually assumed for elliptical astigmatic beams.

9.
Opt Lett ; 44(2): 283-286, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30644881

RESUMO

We report on high-quality infrared (IR)-resonant plasmonic nanoantenna arrays fabricated on a thin gold film by tightly focused femtosecond (fs) laser pulses coming at submegahertz repetition rates at a printing rate of 10 million elements per second. To achieve this, the laser pulses were spatially multiplexed by fused silica diffractive optical elements into 51 identical submicrometer-sized laser spots arranged into a linear array at periodicity down to 1 µm. The demonstrated high-throughput nanopatterning modality indicates fs laser maskless microablation as an emerging robust, flexible, and competitive lithographic tool for advanced fabrication of IR-range plasmonic sensors for environmental sensing, chemosensing, and biosensing.


Assuntos
Raios Infravermelhos , Lasers , Fenômenos Ópticos , Impressão , Dióxido de Silício/química
10.
Sci Rep ; 8(1): 16489, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30405143

RESUMO

Surface-enhanced spectroscopy (SES) techniques, including surface-enhanced photoluminescence (SEPL), Raman scattering (SERS) and infrared absorption (SEIRA), represent powerful biosensing modalities, allowing non-invasive label-free identification of various molecules and quantum emitters in the vicinity of nanotextured surfaces. Enhancement of multi-wavelength (vis-IR) excitation of analyte molecules of interest atop a single textured substrate could pave the way toward ultimate chemosensing performance and further widespread implementation of the SES-based approaches in various crucial areas, such as point-ofcare diagnostics. In this paper, an easy-to-implement ultrafast direct laser printing via partial spallation of thermally-thick silver films and subsequent large-scale magnetron deposition of nanometer-thick Au layers of variable thickness was implemented to produce bimetallic textured surfaces with the cascaded nanotopography. The produced bimetallic textures demonstrate the strong broadband plasmonic response over the entire visible spectral range. Such plasmonic performance was confirmed by convenient spectroscopy-free Red-Green-Blue (RGB) color analysis of the dark-field (DF) scattering images supported by numerical calculations of the electromagnetic (EM) "near-fields", as well as comprehensive DF spectroscopic characterization. Bimetallic laser-printed nanotextures, which can be easily printed at ultrafast (square millimeters per second) rate, using galvanometric scanning, exhibited strong enhancement of the SEPL (up to 75-fold) and SERS (up to 106 times) yields for the organic dye molecules excited at various wavelengths. Additionally, comprehensive optical and sensing characterization of the laser-printed bimetallic surface structures allows substantiating the convenient spectroscopy-free RGB color analysis as a valuable tool for predictive assessment of the plasmonic properties of the various irregularly and quasi-periodically nanotextured surfaces.

11.
Opt Lett ; 42(23): 5022-5025, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29216170

RESUMO

Laser irradiation of various materials including metals, polymers, and semiconductors with vortex beams was previously shown to "twist" transiently molten matter providing the direct easy-to-implement way to obtain chiral surface relief. Specifically for metals, this effect was attributed to transfer of an orbital angular momentum (OAM) carried by a vortex beam. In this Letter, we report the formation of twisted metallic nanoneedles on surfaces of silver and gold films under their irradiation by a zero-OAM laser beam with a spiral-shaped intensity distribution. Our comparative experiments clearly demonstrate, for the first time to the best of our knowledge, that the formation of the chiral nanoneedles on the noble-metal films is mainly governed by the temperature-gradient-induced chiral thermocapillary mass transfer, rather than by OAM-driven rotation of the molten matter.

12.
Opt Lett ; 42(14): 2838-2841, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28708182

RESUMO

Multi-sector broadband diffractive optical elements (DOEs) were designed and fabricated from fused silica for high-efficiency multiplexing of femtosecond and nanosecond Gaussian laser beams into multiple (up to one 100) optically tunable microbeams with increased high-numerical aperture (NA) focal depths. Various DOE-related issues, such as high-NA laser focusing, laser pulsewidth, and DOE symmetry-dependent heat conduction effects, as well as the corresponding spatial resolution, were discussed in the context of high-throughput laser patterning. The increased focal depths provided by such DOEs, their high multiplexing efficiency and damage threshold, as well as easy-to-implement optical shaping of output microbeams provide advanced opportunities for direct, mask-free, and vacuum-free high-throughput subtractive (ablative) and displacive pulsed-laser patterning of various nanoplasmonic films for surface-enhanced spectroscopy, sensing, and light control.

13.
Opt Express ; 25(9): 10214-10223, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28468395

RESUMO

Donut-shaped laser radiation, carrying orbital angular momentum, namely optical vortex, was recently shown to provide vectorial mass transfer, twisting transiently molten material and producing chiral micro-scale structures on surfaces of different bulk materials upon their resolidification. In this paper, we show that at high-NA focusing nanosecond laser vortices can produce chiral nanoneedles (nanojets) of variable size on thin films of such plasmonic materials, as silver and gold films, covering thermally insulating substrates. Main geometric parameters of the produced chiral nanojets, such as height and aspect ratio, were shown to be tunable in a wide range by varying metal film thickness, supporting substrates, and the optical size of the vortex beam. Donut-shaped vortex nanosecond laser pulses, carrying two vortices with opposite handedness, were demonstrated to produce two chiral nanojets twisted in opposite directions. These results suggest optical interference of the incident and reflected laser beams as a source of complex surface intensity distributions in metal films, possessing spiral components and driving both center-symmetric and spiral thermocapillary melt flows to yield in frozen nanoneedles with their pre-determined spiral nanocarving.

14.
Opt Express ; 23(7): 8373-82, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25968676

RESUMO

A technique for generating dark-hollow optical beams (DHOBs) with a controllable cross-sectional intensity distribution is proposed and studied both theoretically and experimentally. Superimposed Bessel beams were used to generate such DHOBs. Variation of individual beam parameters enables the generation of Bessel-like non-diffracting beams. This technique allows the design of transmission functions for elements that shape both non-rotating and rotating DHOBs. We demonstrate photophoresis-based optical trapping and manipulation of absorbing air-borne nanoclusters with such beams.

15.
Opt Lett ; 40(5): 701-4, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25723411

RESUMO

We study elliptical vortex Hermite-Gaussian (vHG) beams, which are described by the complex amplitude proportional to the nth-order Hermite polynomial whose argument is a function of a real parameter a. At |a|<1, on the vertical axis of the beam cross section, there are n isolated optical nulls that produce optical vortices with topological charge +1(a<0) or -1(a>0). At |a|>1, similar isolated optical nulls of the vHG beams are found on the horizontal axis. At a=0, the vHG beam becomes identical to the HG mode of the order (0,n). We derive the orbital angular momentum (OAM) of the vHG beams, which depends on the parameter a and an ellipticity parameter of the Gaussian beam. The derived equation allows the transverse intensity of the vHG-beam to be changed without changing its OAM. The experimental and theoretical results are in good agreement.

16.
Appl Opt ; 52(25): 6230-8, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24085081

RESUMO

A procedure for computing the phase transmission function of diffractive optical elements intended to form an array of optical bottle beams is proposed and studied. The procedure is based on a superposition of Bessel beams. We show that the hollow circular beams (optical bottle beams) are suited for trapping transparent spherical micro-objects matched in radius with the beam radius. A series of experiments on trapping transparent micro-objects in the optical bottle arrays is described. Results of an experiment on trapping opaque spherical microparticles in a double optical bottle are reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...