Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 134(4): 995-1003, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36927142

RESUMO

We analyzed the fractal dimension (Df) of lung gas and blood distribution imaged with synchrotron radiation K-edge subtraction (KES), in six anesthetized adult New Zealand White rabbits. KES imaging was performed in upright position during stable Xe gas (64% in O2) inhalation and iodine infusion (Iomeron, 350 mg/mL), respectively, at baseline and after induced bronchoconstriction by aerosolized methacholine (125 mg/mL, 90 s) and bronchodilator (salbutamol, 10 mg/mL, 90 s) inhalation, at two axial image levels. Lung Xe and iodine images were segmented, and maps of regional lung gas and blood fractions were computed. The Df of lung gas (DfXe) and blood (DfIodine) distribution was computed based on a log-log plot of variation coefficient as a function of region volume. DfXe decreased significantly during bronchoconstriction (P < 0.0001), and remained low after salbutamol. DfIodine depended on the axial image level (P < 0.0001), but did not change with bronchoconstriction. DfXe was significantly associated with arterial [Formula: see text] (R = 0.67, P = 0.002), and negatively associated with [Formula: see text] (R = -0.62, P = 0.006), respiratory resistance (R = -0.58, P = 0.011), and elastance (R = -0.55, P = 0.023). These data demonstrate the reduced Df of gas distribution during acute bronchoconstriction, and the association of this parameter with physiologically meaningful variables. This finding suggests a decreased complexity and space-filling properties of lung ventilation during bronchoconstriction, and could serve as a functional imaging biomarker in obstructive airway diseases.NEW & NOTEWORTHY Here, we used an energy-subtractive imaging technique to assess the fractal dimension (Df) of lung gas and blood distribution and the effect of acute bronchoconstriction. We found that Df of gas significantly decreases in bronchoconstriction. Conversely, Df of blood exhibits gravity-dependent changes only, and is not affected by acute bronchoconstriction. Our data show that the fractal dimension of lung gas detects the emergence of clustered rather than scattered loss of ventilatory units during bronchoconstriction.


Assuntos
Asma , Iodo , Animais , Coelhos , Broncoconstrição , Síncrotrons , Fractais , Ventilação Pulmonar/fisiologia , Pulmão , Albuterol/farmacologia , Iodo/farmacologia
2.
Cancer Biother Radiopharm ; 38(3): 184-191, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36269660

RESUMO

The authors review the results of 249 patients treated with boron neutron capture therapy (BNCT) at the Helsinki University Hospital, Helsinki, Finland, from May 1999 to January 2012 with neutrons obtained from a nuclear reactor source (FiR 1) and using l-boronophenylalanine-fructose (l-BPA-F) as the boron delivery agent. They also describe a new hospital BNCT facility that hosts a proton accelerator-based neutron source for BNCT. Most of the patients treated with nuclear reactor-derived neutrons had either inoperable, locally recurrent head and neck cancer or malignant glioma. In general, l-BPA-F-mediated BNCT was relatively well tolerated with adverse events usually similar to those of conventional radiotherapy. Twenty-eight (96.6%) out of the evaluable 29 patients with head and neck cancer and treated within a clinical trial either responded to BNCT or had tumor growth stabilization for at least 5 months, suggesting efficacy of BNCT in the treatment of this patient population. The new accelerator-based BNCT facility houses a nuBeam neutron source that consists of an electrostatic Cockcroft-Walton-type proton accelerator and a lithium target that converts the proton beam to neutrons. The proton beam energy is 2.6 MeV operating with a current of 30 mA. Treatment planning is based on Monte Carlo simulation and the RayStation treatment planning system. Patient positioning is performed with a 6-axis robotic image-guided system, and in-room imaging is done with a rail-mounted computed tomography scanner. Under normal circumstances, the personnel can enter the treatment room almost immediately after shutting down the proton beam, which improves the unit capacity. ClinicalTrials.gov ID: NCT00114790.


Assuntos
Terapia por Captura de Nêutron de Boro , Glioma , Neoplasias de Cabeça e Pescoço , Humanos , Finlândia , Prótons , Terapia por Captura de Nêutron de Boro/métodos , Glioma/tratamento farmacológico , Compostos de Boro/uso terapêutico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Nêutrons , Reatores Nucleares
4.
J Physiol ; 599(22): 5121-5132, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34647325

RESUMO

Ventilation is inhomogeneous in the lungs across species. It has been hypothesized that ventilation inhomogeneity is largely determined by the design of the airway branching network. Because exchange of gases at the alveolar barrier is more efficient when gas concentrations are evenly distributed at subacinar length scales, it is assumed that a 'functional unit' of ventilation exists within the lung periphery, where gas concentration becomes uniform. On the other hand, because the morphology of pulmonary airways and alveoli, and the distribution of inhaled fluorescent particles show self-similar fractal properties over a wide range of length scales, it has been predicted that fractal dimension of ventilation approaches unity within an internally homogeneous functional unit of ventilation. However, the existence of such a functional unit has never been demonstrated experimentally due to lack of in situ gas concentration measurements of sufficient spatial resolution in the periphery of a complex bifurcating network. Here, using energy-subtractive synchrotron radiation tomography, we measured the distribution of an inert gas (Xe) in the in vivo rabbit lung during Xe wash-in breathing manoeuvres. The effects of convective flow rate, diffusion and cardiac motion were also assessed. Fractal analysis of resulting gas concentration and tissue density maps revealed that fractal dimension was always smaller for Xe than for tissue density, and that only for the gas, a length scale existed where fractal dimension approached unity. The length scale where this occurred was seen to correspond to that of a rabbit acinus, the terminal structure comprising only alveolated airways. KEY POINTS: Gas ventilation is inhomogeneous in the lung of many species. However, it is not known down to what length scales this inhomogeneity persists. It is generally assumed that ventilation becomes homogeneous at subacinar length scales, beyond the spatial resolution of commonly available imaging techniques, hence this has not been demonstrated experimentally. Here we measured the distribution of inhaled Xe gas in the rabbit lung using synchrotron radiation energy-subtractive imaging and used fractal analysis to show that ventilation becomes internally uniform within regions about the size of rabbit lung acini.


Assuntos
Fractais , Pulmão , Animais , Difusão , Pulmão/diagnóstico por imagem , Alvéolos Pulmonares , Coelhos , Respiração
5.
Phys Med ; 79: 22-35, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33070047

RESUMO

Many lung disease processes are characterized by structural and functional heterogeneity that is not directly appreciable with traditional physiological measurements. Experimental methods and lung function modeling to study regional lung function are crucial for better understanding of disease mechanisms and for targeting treatment. Synchrotron radiation offers useful properties to this end: coherence, utilized in phase-contrast imaging, and high flux and a wide energy spectrum which allow the selection of very narrow energy bands of radiation, thus allowing imaging at very specific energies. K-edge subtraction imaging (KES) has thus been developed at synchrotrons for both human and small animal imaging. The unique properties of synchrotron radiation extend X-ray computed tomography (CT) capabilities to quantitatively assess lung morphology, and also to map regional lung ventilation, perfusion, inflammation and biomechanical properties, with microscopic spatial resolution. Four-dimensional imaging, allows the investigation of the dynamics of regional lung functional parameters simultaneously with structural deformation of the lung as a function of time. This review summarizes synchrotron radiation imaging methods and overviews examples of its application in the study of disease mechanisms in preclinical animal models, as well as the potential for clinical translation both through the knowledge gained using these techniques and transfer of imaging technology to laboratory X-ray sources.


Assuntos
Pulmão , Síncrotrons , Animais , Humanos , Pulmão/diagnóstico por imagem , Radiografia , Técnica de Subtração , Tomografia Computadorizada por Raios X
6.
Neurooncol Pract ; 7(4): 415-427, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32760593

RESUMO

BACKGROUND: Cranial radiotherapy may damage the cerebral vasculature. The aim of this study was to understand the prevalence and risk factors of cerebrovascular disease (CVD) and white matter hyperintensities (WMHs) in childhood brain tumors (CBT) survivors treated with radiotherapy. METHODS: Seventy CBT survivors who received radiotherapy were enrolled in a cross-sectional study at a median 20 years after radiotherapy cessation. The prevalence of and risk factors for CVD were investigated using MRI, MRA, and laboratory testing. Tumors, their treatment, and stroke-related data were retrieved from patients' files. RESULTS: Forty-four individuals (63%) had CVD at a median age of 27 years (range, 16-43 years). The prevalence rates at 20 years for CVD, small-vessel disease, and large-vessel disease were 52%, 38%, and 16%, respectively. Ischemic infarcts were diagnosed in 6 survivors, and cerebral hemorrhage in 2. Lacunar infarcts were present in 7, periventricular or deep WMHs in 34 (49%), and mineralizing microangiopathy in 21 (30%) survivors. Multiple pathologies were detected in 44% of the participants, and most lesions were located in a high-dose radiation area. Higher blood pressure was associated with CVD and a presence of WMHs. Higher cholesterol levels increased the risk of ischemic infarcts and WMHs, and lower levels of high-density lipoprotein and higher waist circumference increased the risk of lacunar infarcts. CONCLUSIONS: Treating CBTs with radiotherapy increases the risk of early CVD and WMHs in young adult survivors. These results suggest an urgent need for investigating CVD prevention in CBT patients.

7.
J Clin Med ; 8(8)2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31357677

RESUMO

Modern ventilatory strategies are based on the assumption that lung terminal airspaces act as isotropic balloons that progressively accommodate gas. Phase contrast synchrotron radiation computed tomography (PCSRCT) has recently challenged this concept, showing that in healthy lungs, deflation mechanisms are based on the sequential de-recruitment of airspaces. Using PCSRCT scans in an animal model of acute respiratory distress syndrome (ARDS), this study examined whether the numerosity (ASnum) and dimension (ASdim) of lung airspaces change during a deflation maneuver at decreasing levels of positive end-expiratory pressure (PEEP) at 12, 9, 6, 3, and 0 cmH2O. Deflation was associated with significant reduction of ASdim both in the whole lung section (passing from from 13.1 ± 2.0 at PEEP 12 to 7.6 ± 4.2 voxels at PEEP 0) and in single concentric regions of interest (ROIs). However, the regression between applied PEEP and ASnum was significant in the whole slice (ranging from 188 ± 52 at PEEP 12 to 146.4 ± 96.7 at PEEP 0) but not in the single ROIs. This mechanism of deflation in which reduction of ASdim is predominant, differs from the one observed in healthy conditions, suggesting that the peculiar alveolar micromechanics of ARDS might play a role in the deflation process.

8.
Crit Care Med ; 47(9): e774-e781, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31162202

RESUMO

OBJECTIVES: Airway closure is involved in adverse effects of mechanical ventilation under both general anesthesia and in acute respiratory distress syndrome patients. However, direct evidence and characterization of individual airway closure is lacking. Here, we studied the same individual peripheral airways in intact lungs of anesthetized and mechanically ventilated rabbits, at baseline and following lung injury, using high-resolution synchrotron phase-contrast CT. DESIGN: Laboratory animal investigation. SETTING: European synchrotron radiation facility. SUBJECTS: Six New-Zealand White rabbits. INTERVENTIONS: The animals were anesthetized, paralyzed, and mechanically ventilated in pressure-controlled mode (tidal volume, 6 mL/kg; respiratory rate, 40; FIO2, 0.6; inspiratory:expiratory, 1:2; and positive end-expiratory pressure, 3 cm H2O) at baseline. Imaging was performed with a 47.5 × 47.5 × 47.5 µm voxel size, at positive end-expiratory pressure 12, 9, 6, 3, and 0 cm H2O. The imaging sequence was repeated after lung injury induced by whole-lung lavage and injurious ventilation in four rabbits. Cross-sections of the same individual airways were measured. MEASUREMENTS AND MAIN RESULTS: The airways were measured at baseline (n = 48; radius, 1.7 to 0.21 mm) and after injury (n = 32). Closure was observed at 0 cm H2O in three of 48 airways (6.3%; radius, 0.35 ± 0.08 mm at positive end-expiratory pressure 12) at baseline and five of 32 (15.6%; radius, 0.28 ± 0.09 mm) airways after injury. Cross-section was significantly reduced at 3 and 0 cm H2O, after injury, with a significant relation between the relative change in cross-section and airway radius at 12 cm H2O in injured, but not in normal lung (R = 0.60; p < 0.001). CONCLUSIONS: Airway collapsibility increases in the injured lung with a significant dependence on airway caliber. We identify "compliant collapse" as the main mechanism of airway closure in initially patent airways, which can occur at more than one site in individual airways.


Assuntos
Obstrução das Vias Respiratórias/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Respiração Artificial/efeitos adversos , Animais , Coelhos , Tomografia Computadorizada por Raios X
9.
Front Physiol ; 10: 719, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231245

RESUMO

INTRODUCTION: The mechanisms of lung inflation and deflation are only partially known. Ventilatory strategies to support lung function rely upon the idea that lung alveoli are isotropic balloons that progressively inflate or deflate and that lung pressure/volume curves derive only by the interplay of critical opening pressures, critical closing pressures, lung history, and position of alveoli inside the lung. This notion has been recently challenged by subpleural microscopy, magnetic resonance, and computed tomography (CT). Phase-contrast synchrotron radiation CT (PC-SRCT) can yield in vivo images at resolutions higher than conventional CT. OBJECTIVES: We aimed to assess the numerosity (ASden) and the extension of the surface of airspaces (ASext) in healthy conditions at different volumes, during stepwise lung deflation, in concentric regions of the lung. METHODS: The study was conducted in seven anesthetized New Zealand rabbits. They underwent PC-SRCT scans (resolution of 47.7 µm) of the lung at five decreasing positive end expiratory pressure (PEEP) levels of 12, 9, 6, 3, and 0 cmH2O during end-expiratory holds. Three concentric regions of interest (ROIs) of the lung were studied: subpleural, mantellar, and core. The images were enhanced by phase contrast algorithms. ASden and ASext were computed by using the Image Processing Toolbox for MatLab. Statistical tests were used to assess any significant difference determined by PEEP or ROI on ASden and ASext. RESULTS: When reducing PEEP, in each ROI the ASden significantly decreased. Conversely, ASext variation was not significant except for the core ROI. In the latter, the angular coefficient of the regression line was significantly low. CONCLUSION: The main mechanism behind the decrease in lung volume at PEEP reduction is derecruitment. In our study involving lung regions laying on isogravitational planes and thus equally influenced by gravitational forces, airspace numerosity and extension of surface depend on the local mechanical properties of the lung.

10.
J Adolesc Young Adult Oncol ; 8(5): 593-601, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31063432

RESUMO

Purpose: Childhood brain tumors (CBTs) and their treatment increase the risk of secondary neoplasms (SNs). We studied the incidence of secondary craniospinal tumors with magnetic resonance imaging (MRI) screening in a national cohort of survivors of CBT treated with radiotherapy, and we analyzed the Finnish Cancer Registry (FCR) data on SNs in survivors of CBT with radiotherapy registered as a part of the primary tumor treatment. Methods: A total of 73 survivors of CBT participated in the MRI study (mean follow-up of 19 ± 6.2 years). The incidence of SNs in a cohort of CBT patients (N = 569) was retrieved from the FCR (mean follow-up of 11 ± 12.9 years). Brain tumors were diagnosed at age ≤16 years between the years 1970 and 2008 in the clinical study and the years 1963 and 2010 in the FCR population. Results: Secondary brain tumors, meningiomas in all and schwannoma in one, were found in 6 of the 73 (8.2%) survivors with a mean of 23 ± 4.3 years after the diagnosis of the primary tumor. The cumulative incidence was 10.2% (95% confidence interval [CI] 3.9-25.1) in 25 years of follow-up. In the FCR data, the 25-year cumulative incidence of SNs was 2.4% (95% CI 1.3-4.1); only two brain tumors, no meningiomas, were registered. Conclusion: Survivors of CBT treated with radiotherapy have a high incidence of meningiomas, which are rarely registered in the FCR.


Assuntos
Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Meningioma/etiologia , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Encefálicas/patologia , Criança , Feminino , Humanos , Masculino , Meningioma/patologia , Neoplasias Induzidas por Radiação/patologia , Fatores de Risco
11.
Am J Respir Cell Mol Biol ; 57(4): 459-467, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28535074

RESUMO

Despite the importance of dynamic changes in the regional distributions of gas and blood during the breathing cycle for lung function in the mechanically ventilated patient, no quantitative data on such cyclic changes are currently available. We used a novel gated synchrotron computed tomography imaging to quantitatively image regional lung gas volume (Vg), tissue density, and blood volume (Vb) in six anesthetized, paralyzed, and mechanically ventilated rabbits with normal lungs. Images were repeatedly collected during ventilation and steady-state inhalation of 50% xenon, or iodine infusion. Data were acquired in a dependent and nondependent image level, at zero end-expiratory pressure (ZEEP) and 9 cm H2O (positive end-expiratory pressure), and a tidal volume (Vt) of 6 ml/kg (Vt1) or 9 ml/kg (Vt2) at an Inspiratory:Expiratory ratio of 0.5 or 1.7 by applying an end-inspiratory pause. A video showing dynamic decreases in Vb during inspiration is presented. Vb decreased with positive end-expiratory pressure (P = 0.006; P = 0.036 versus Vt1-ZEEP and Vt2-ZEEP, respectively), and showed larger oscillations at the dependent image level, whereas a 45% increase in Vt did not have a significant effect. End-inspiratory Vb minima were reduced by an end-inspiratory pause (P = 0.042, P = 0.006 at nondependent and dependent levels, respectively). Normalized regional Vg:Vb ratio increased upon inspiration. Our data demonstrate, for the first time, within-tidal cyclic variations in regional pulmonary Vb. The quantitative matching of regional Vg and Vb improved upon inspiration under ZEEP. Further study is underway to determine whether these phenomena affect intratidal gas exchange.


Assuntos
Volume Sanguíneo , Interpretação de Imagem Assistida por Computador , Inalação , Pulmão , Respiração Artificial , Síncrotrons , Ventiladores Mecânicos , Animais , Feminino , Pulmão/irrigação sanguínea , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Masculino , Coelhos
12.
Crit Care Med ; 45(4): 687-694, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28107207

RESUMO

OBJECTIVES: Positive pressure ventilation exposes the lung to mechanical stresses that can exacerbate injury. The exact mechanism of this pathologic process remains elusive. The goal of this study was to describe recruitment/derecruitment at acinar length scales over short-time frames and test the hypothesis that mechanical interdependence between neighboring lung units determines the spatial and temporal distributions of recruitment/derecruitment, using a computational model. DESIGN: Experimental animal study. SETTING: International synchrotron radiation laboratory. SUBJECTS: Four anesthetized rabbits, ventilated in pressure controlled mode. INTERVENTIONS: The lung was consecutively imaged at ~ 1.5-minute intervals using phase-contrast synchrotron imaging, at positive end-expiratory pressures of 12, 9, 6, 3, and 0 cm H2O before and after lavage and mechanical ventilation induced injury. The extent and spatial distribution of recruitment/derecruitment was analyzed by subtracting subsequent images. In a realistic lung structure, we implemented a mechanistic model in which each unit has individual pressures and speeds of opening and closing. Derecruited and recruited lung fractions (Fderecruited, Frecruited) were computed based on the comparison of the aerated volumes at successive time points. MEASUREMENTS AND MAIN RESULTS: Alternative recruitment/derecruitment occurred in neighboring alveoli over short-time scales in all tested positive end-expiratory pressure levels and despite stable pressure controlled mode. The computational model reproduced this behavior only when parenchymal interdependence between neighboring acini was accounted for. Simulations closely mimicked the experimental magnitude of Fderecruited and Frecruited when mechanical interdependence was included, while its exclusion gave Frecruited values of zero at positive end-expiratory pressure greater than or equal to 3 cm H2O. CONCLUSIONS: These findings give further insight into the microscopic behavior of the injured lung and provide a means of testing protective-ventilation strategies to prevent recruitment/derecruitment and subsequent lung damage.


Assuntos
Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/fisiopatologia , Respiração com Pressão Positiva/efeitos adversos , Alvéolos Pulmonares/fisiopatologia , Lesão Pulmonar Aguda/diagnóstico por imagem , Animais , Simulação por Computador , Masculino , Pressão , Alvéolos Pulmonares/diagnóstico por imagem , Coelhos , Síncrotrons
13.
Eur J Anaesthesiol ; 33(10): 767-75, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27533710

RESUMO

BACKGROUND: It is not well understood how different ventilation modes affect the regional distribution of ventilation, particularly within the injured lung. OBJECTIVES: We compared respiratory mechanics, lung aeration and regional specific ventilation ((Equation is included in full-text article.)) distributions in healthy and surfactant-depleted rabbits ventilated with pressure-regulated volume control (PRVC) mode with a decelerating inspiratory flow or with volume control (VC) mode. DESIGN: Randomised experimental study. ANIMALS AND INTERVENTIONS: New Zealand white rabbits (n = 8) were anaesthetised, paralysed and mechanically ventilated either with VC or PRVC mode (tidal volume: 7 ml kg; rate: 40 min; positive end-expiratory pressure (PEEP): 3 cmH2O), at baseline and after lung injury induced by lung lavage. MAIN OUTCOME MEASURES: Airway resistance (Raw), respiratory tissue damping (G) and elastance (H) were measured by low-frequency forced oscillations. Synchrotron radiation computed tomography during stable xenon wash-in was used to measure regional lung aeration and specific ventilation and the relative fraction of nonaerated, trapped, normally, poorly and hyperinflated lung regions. RESULTS: Lung lavage significantly elevated peak inspiratory pressure (PIP) (P < 0.001). PIP was lower on PRVC compared with VC mode (-12.7 ±â€Š1.7%, P < 0.001). No significant differences in respiratory mechanics, regional ventilation distribution, strain or blood oxygenation could be detected between the two ventilation modes. CONCLUSION: A decelerating flow pattern (PRVC) resulted in equivalent regional ventilation distribution, respiratory mechanics and gas exchange, in both normal and mechanically heterogeneous lungs with, however, a significantly lower peak pressure. Our data suggest that the lower PIP on PRVC ventilation was because of the decelerating flow pattern rather than the ventilation distribution.


Assuntos
Lesão Pulmonar Aguda/fisiopatologia , Lesão Pulmonar Aguda/terapia , Pulmão/fisiologia , Respiração Artificial/métodos , Mecânica Respiratória/fisiologia , Volume de Ventilação Pulmonar/fisiologia , Animais , Masculino , Respiração com Pressão Positiva/métodos , Pressão , Coelhos , Distribuição Aleatória
14.
J Appl Physiol (1985) ; 119(3): 290-8, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25997942

RESUMO

We assessed the changes in regional lung function following instillation of surfactant in a model of respiratory distress syndrome (RDS) induced by whole lung lavage and mechanical ventilation in eight anaesthetized, paralyzed, and mechanically ventilated New Zealand White rabbits. Regional specific ventilation (sV̇) was measured by K-edge subtraction synchrotron computed tomography during xenon washin. Lung regions were classified as poorly aerated (PA), normally aerated (NA), or hyperinflated (HI) based on regional density. A functional category was defined within each class based on sV̇ distribution (High, Normal, and Low). Airway resistance (Raw), respiratory tissue damping (G), and elastance (H) were measured by forced oscillation technique at low frequencies before and after whole lung saline lavage-induced (100 ml/kg) RDS, and 5 and 45 min after intratracheal instillation of beractant (75 mg/kg). Surfactant instillation improved Raw, G, and H (P < 0.05 each), and gas exchange and decreased atelectasis (P < 0.001). It also significantly improved lung aeration and ventilation in atelectatic lung regions. However, in regions that had remained normally aerated after lavage, it decreased regional aeration and increased sV̇ (P < 0.001) and sV̇ heterogeneity. Although surfactant treatment improved both central airway and tissue mechanics and improved regional lung function of initially poorly aerated and atelectatic lung, it deteriorated regional lung function when local aeration was normal prior to administration. Local mechanical and functional heterogeneity can potentially contribute to the worsening of RDS and gas exchange. These data underscore the need for reassessing the benefits of routine prophylactic vs. continuous positive airway pressure and early "rescue" surfactant therapy in very immature infants.


Assuntos
Produtos Biológicos/administração & dosagem , Modelos Animais de Doenças , Pulmão/fisiopatologia , Troca Gasosa Pulmonar/efeitos dos fármacos , Síndrome do Desconforto Respiratório/fisiopatologia , Mecânica Respiratória/efeitos dos fármacos , Resistência das Vias Respiratórias/efeitos dos fármacos , Animais , Instilação de Medicamentos , Pulmão/efeitos dos fármacos , Masculino , Surfactantes Pulmonares , Coelhos , Síndrome do Desconforto Respiratório/tratamento farmacológico , Irrigação Terapêutica , Resultado do Tratamento
15.
Respir Physiol Neurobiol ; 189(3): 465-72, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24012991

RESUMO

We measured bronchoconstriction in central bronchi, and in small peripheral airways causing the emergence of ventilation defects (VD), through two delivery routes: intravenous (IV) and inhaled MCh, in 2 groups of rabbits (A: n=5; B: n=4), using synchrotron imaging of regional lung structure and ventilation. We assessed the effect an initial IV challenge on a subsequent inhaled challenge in group B. Inhaled MCh decreased central airway cross-sections (CA) by 13-22%, but increased VD area by 25-49%. IV MCh decreased CA by 44% but increased the area of ventilation defects (VD) by 13% only. An initial IV MCh challenge reduced regional ventilation heterogeneity following a subsequent inhaled MCh challenge, suggesting the role of agonist-receptor interaction in the response pattern. Heterogeneous agonist distribution due to uneven aerosol deposition could explain the different patterns of response between IV and inhaled routes. This mechanism could participate in the emergence of ventilation heterogeneities during bronchial challenge, or exposure to allergen in asthmatic patients.


Assuntos
Broncoconstrição/efeitos dos fármacos , Cloreto de Metacolina/administração & dosagem , Agonistas Muscarínicos/administração & dosagem , Ventilação Pulmonar/efeitos dos fármacos , Administração por Inalação , Administração Intravenosa , Análise de Variância , Animais , Brônquios/irrigação sanguínea , Brônquios/efeitos dos fármacos , Pulmão/diagnóstico por imagem , Pulmão/efeitos dos fármacos , Masculino , Coelhos , Radiografia , Tomógrafos Computadorizados , Xenônio
16.
J Appl Physiol (1985) ; 115(7): 1057-64, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23887899

RESUMO

It is not known whether local factors within the airway wall or parenchyma may influence the emergence and spatial distribution of ventilation defects (VDs), thereby modulating the dynamic system behavior of the lung during bronchoconstriction. We assessed the relationship between the distribution of cellular effectors and the emergence of defects in regional ventilation distribution following allergen challenge. We performed high-resolution K-edge subtraction (KES) synchrotron imaging during xenon inhalation and measured the forced oscillatory input impedance in ovalbumin (OVA)-sensitized Brown-Norway rats (n = 12) at baseline and repeatedly following OVA challenge. Histological slices with best anatomic matching to the computed tomographic images were stained with a modified May-Grunwald Giemsa and immunohistochemical staining with monoclonal anti-rat CD68, in six rats. Slides were digitized and total cells and eosinophils were counted in the walls of bronchi and vessels randomly selected within and outside of VDs on the basis of xenon-KES images. Ventilated alveolar area decreased and ventilation heterogeneity, Newtonian resistance, tissue damping, and elastance increased following OVA challenge. Eosinophil, total cell, and CD68+ counts were significantly higher in the bronchial and vascular walls within vs. outside of the VDs. The minimal central airway diameters during OVA-induced bronchoconstriction were correlated with eosinophil (R = -0.85; P = 0.031) and total cell densities (R = -0.82; P = 0.046) in the airway walls within the poorly ventilated zones. Our findings suggest that allergic airway inflammation is locally heterogeneous and is topographically associated with the local emergence of VDs following allergen challenge.


Assuntos
Alérgenos/imunologia , Asma/imunologia , Brônquios/imunologia , Broncoconstrição/imunologia , Ovalbumina/imunologia , Ventilação Pulmonar/imunologia , Animais , Asma/patologia , Brônquios/patologia , Amarelo de Eosina-(YS) , Eosinófilos/imunologia , Eosinófilos/patologia , Inflamação/imunologia , Inflamação/patologia , Azul de Metileno , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/patologia , Ratos
17.
Anesthesiology ; 119(1): 89-100, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23559029

RESUMO

BACKGROUND: Ventilator-induced lung injury occurs due to exaggerated local stresses, repeated collapse, and opening of terminal air spaces in poorly aerated dependent lung, and increased stretch in nondependent lung. The aim of this study was to quantify the functional behavior of peripheral lung units in whole-lung lavage-induced surfactant depletion, and to assess the effect of positive end-expiratory pressure. METHODS: The authors used synchrotron imaging to measure lung aeration and regional specific ventilation at positive end-expiratory pressure of 3 and 9 cm H2O, before and after whole-lung lavage in rabbits. Respiratory mechanical parameters were measured, and helium-washout was used to assess end-expiratory lung volume. RESULTS: Atelectatic, poorly, normally aerated, hyperinflated, and trapped regions could be identified using the imaging technique used in this study. Surfactant depletion significantly increased atelectasis (6.3±3.3 [mean±SEM]% total lung area; P=0.04 vs. control) and poor aeration in dependent lung. Regional ventilation was distributed to poorly aerated regions with high (16.4±4.4%; P<0.001), normal (20.7±5.9%; P<0.001 vs. control), and low (5.7±1.2%; P<0.05 vs. control) specific ventilation. Significant redistribution of ventilation to normally aerated nondependent lung regions occurred (41.0±9.6%; P=0.03 vs. control). Increasing positive end-expiratory pressure level to 9 cm H2O significantly reduced poor aeration and recruited atelectasis, but ventilation redistribution persisted (39.2±9.5%; P<0.001 vs. control). CONCLUSIONS: Ventilation of poorly aerated dependent lung regions, which can promote the local concentration of mechanical stresses, was the predominant functional behavior in surfactant-depleted lung. Potential tidal recruitment of atelectatic lung regions involved a smaller fraction of the imaged lung. Significant ventilation redistribution to aerated lung regions places these at risk of increased stretch injury.


Assuntos
Respiração com Pressão Positiva , Surfactantes Pulmonares/metabolismo , Respiração Artificial , Mecânica Respiratória , Animais , Lavagem Broncoalveolar , Dióxido de Carbono/sangue , Processamento de Imagem Assistida por Computador , Pulmão/diagnóstico por imagem , Medidas de Volume Pulmonar , Masculino , Oxigênio/sangue , Atelectasia Pulmonar/fisiopatologia , Coelhos , Testes de Função Respiratória , Síncrotrons , Tomografia Computadorizada por Raios X
18.
Crit Care Med ; 39(7): 1731-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21494104

RESUMO

OBJECTIVE: To assess the effects of positive end-expiratory pressure on regional ventilation distribution in normal lung and after histamine-induced bronchoconstriction. DESIGN: Experimental study. SETTING: International research laboratory. SUBJECTS: Six healthy New Zealand rabbits weighing 2.5 ± 0.1 kg. INTERVENTIONS: Rabbits were anesthetized, tracheostomized, paralyzed, and mechanically ventilated. Synchrotron radiation computed tomography images of tissue density and specific ventilation were acquired using K-edge subtraction imaging with inhaled stable xenon gas in middle and caudal thoracic levels on 0 and 5 cm H(2)O positive end-expiratory pressure at baseline and twice after histamine inhalation. MEASUREMENTS AND MAIN RESULTS: At baseline, a positive end-expiratory pressure of 5 cm H(2)O significantly increased lung volume. Histamine inhalation caused patchy areas of decreased specific ventilation, including some areas with no ventilation. After histamine, positive end-expiratory pressure significantly increased the area of well-ventilated lung regions and decreased the heterogeneity of specific ventilation. This improvement went together with a significant but limited increase in the area of hyperinflated lung zones. CONCLUSIONS: The findings of this study suggest that in mechanically ventilated rabbit with severely heterogeneous bronchoconstriction, a positive end-expiratory pressure of 5 cm H(2)O significantly improves regional ventilation homogeneity through dilation of flow-limited airways and recruitment of closed airways.


Assuntos
Broncoconstrição/fisiologia , Pulmão/fisiopatologia , Respiração com Pressão Positiva , Ventilação Pulmonar/fisiologia , Animais , Broncoconstritores , Histamina , Pulmão/diagnóstico por imagem , Medidas de Volume Pulmonar , Masculino , Coelhos , Síncrotrons , Tomografia Computadorizada por Raios X/métodos
19.
Am J Physiol Lung Cell Mol Physiol ; 299(2): L242-51, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20543004

RESUMO

Despite the prevalence of active smoking in asthmatics, data on the short-term effect of acute mainstream tobacco smoke exposure on airway responsiveness are very scarce. The aim of this study was to assess the immediate effect of acute exposure to mainstream cigarette smoke on airway reactivity to subsequent nonspecific and allergenic challenges in healthy control (n = 5) and ovalbumin-sensitized rabbits (n = 6). We combined low-frequency forced oscillations and synchrotron radiation CT imaging to differentiate central airway and peripheral airway and lung parenchymal components of the response to airway provocation. Acute exposure to smoke generated by four successive cigarettes (CS) strongly inhibited the central airway response to subsequent IV methacholine (MCh) challenge. In the sensitized animals, although the response to ovalbumin was also inhibited in the central airways, mainstream CS did not blunt the peripheral airway response in this group. In additional groups of experiments, exposure to HEPA-filtered CS (n = 6) similarly inhibited the MCh response, whereas CO (10,000 ppm for 4 min, n = 6) or nitric oxide inhalation instead of CS (240 ppm, 4 x 7 min, n = 5) failed to blunt nonspecific airway responsiveness. Pretreatment with alpha-chymotrypsin to inhibit endogenous VIP before CS exposure had no effect (n = 4). Based on these observations, the gas phase of mainstream cigarette smoke may contain one or more short-term inhibitory components acting primarily on central airways and inhibiting the response to both specific and nonspecific airway provocation, but not on the lung periphery where both lung mechanical parameters, and synchrotron-imaging derived parameters, showed large changes in response to allergen challenge in sensitized animals.


Assuntos
Pulmão/imunologia , Fumar/efeitos adversos , Administração por Inalação , Alérgenos/farmacologia , Animais , Monóxido de Carbono/efeitos adversos , Quimotripsina/farmacologia , Pulmão/diagnóstico por imagem , Pulmão/efeitos dos fármacos , Pulmão/fisiologia , Masculino , Cloreto de Metacolina/farmacologia , Ovalbumina/imunologia , Coelhos , Tomografia Computadorizada por Raios X
20.
Am J Respir Crit Care Med ; 180(4): 296-303, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19483115

RESUMO

RATIONALE: Methacholine (Mch) is routinely used to assess bronchial hyperreactivity; however, little is known about the differences in the lung response pattern between this provocation and that observed with ovalbumin (Ova) after allergic sensitization. OBJECTIVES: To compare (1) the central versus peripheral effects of Mch and Ova within the lung by combining measurements of airway and tissue mechanics with synchrotron radiation (SR) imaging, and (2) to assess the extent to which mechanical and imaging parameters are correlated. METHODS: We used the low-frequency forced oscillation technique and SR imaging in control (n = 12) and ovalbumin-sensitized (n = 13) rabbits, at baseline, during intravenous Mch infusion (2.5 microg/kg/min, 5.0 microg/kg/min, or 10.0 microg/kg/min), after recovery from Mch, and after intravenous Ova injection (2.0 mg). We compared intravenous Mch challenge with inhaled Mch (125 mg/ml, 90 s) in a separate group of control animals (n = 5). MEASUREMENTS AND MAIN RESULTS: Airway conductance and tissue elastance were measured by low-frequency forced oscillation technique. The central airway cross-sectional area, the ventilated alveolar area, and the heterogeneity of specific ventilation were quantified by SR imaging. Mch infusion induced constriction predominantly in the central airways, whereas Ova provocation affected mainly the peripheral airways, leading to severe ventilation heterogeneities in sensitized animals. Mch inhalation affected both conducting and peripheral airways. The correlations between airway conductance and central airway cross-sectional area (R = 0.71) and between tissue elastance and ventilated alveolar area (R = -0.72) were strong. CONCLUSIONS: The pattern of lung response caused by intravenous Mch and Ova are fundamentally different. Although inhaled Mch induces a heterogeneous lung response similar to that observed with intravenous allergen, these similar patterns are due to different mechanisms.


Assuntos
Alérgenos , Hiper-Reatividade Brônquica/fisiopatologia , Testes de Provocação Brônquica/métodos , Broncoconstritores , Modelos Animais de Doenças , Processamento de Imagem Assistida por Computador , Cloreto de Metacolina , Oscilometria , Ovalbumina , Mecânica Respiratória/fisiologia , Síncrotrons , Tomografia Computadorizada por Raios X , Administração por Inalação , Resistência das Vias Respiratórias/fisiologia , Alérgenos/imunologia , Animais , Relação Dose-Resposta a Droga , Infusões Intravenosas , Pulmão/fisiopatologia , Complacência Pulmonar/fisiologia , Ovalbumina/imunologia , Ventilação Pulmonar/fisiologia , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...