Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 202: 116369, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38640762

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a group of thousands of highly persistent anthropogenic chemicals widely used in many industries. Therefore, they are, ubiquitously present in various types of environments. Despite their omnipresence, ecotoxicological studies of most PFAS are scarce, and those available often assess the effects of long chain PFAS. In this study, we present the results of an exposure experiment in which wild aquatic amphipod Gammarus spp. was exposed to the short chain perfluorinated substance perfluorobutanoic acid (PFBA) at very low and environmentally relevant concentrations of 0, 10 and 100 ng/L. The exposure lasted for 12 days, and food intake and non-reproductive behavior were analyzed. Exposure to 10 and 100 ng/L PFBA resulted in a lower consumption of food during exposure but no effect on behavior was found.


Assuntos
Anfípodes , Ingestão de Alimentos , Fluorocarbonos , Poluentes Químicos da Água , Animais , Anfípodes/fisiologia , Anfípodes/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
2.
Environ Pollut ; 345: 123466, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295928

RESUMO

Ornamental plants rich in pollen and nectar are often marketed as "pollinator-friendly" by flower retailers. However, even though the plants are attractive from a foraging perspective, i.e pollen and nectar rich, bees and other pollinating insects could be at risk from exposure of pesticide residues on the plants or from pesticide used during production. Pesticides used in ornamental plant production could lead to environmental emissions both during cultivation, at retailer displays and when planted in gardens by the consumers. This study aims to investigate what pesticides that are used in the production of perennial ornamental plants sold in Sweden and if the residues could pose a risk for wild pollinators. We analyze an array of 536 pesticides in whole flowers, leaves, roots and soil of 54 individual (46 had flowers) perennial plants specifically marketed as "bee friendly". In addition, seeds from 65 seed bags were analyzed for the same pesticides. Our result show for the first time the distribution of pesticide residues between flowers, leaves, roots and soils of ornamental plants. We also show that all ornamental plants analyzed contained at least one pesticide, and that some samples contained up to 19 different substances.


Assuntos
Resíduos de Praguicidas , Praguicidas , Abelhas , Animais , Néctar de Plantas/química , Resíduos de Praguicidas/análise , Solo , Polinização , Flores/química , Plantas , Praguicidas/análise
3.
Environ Pollut ; 315: 120422, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36244496

RESUMO

Per-and polyfluoroalkyl substances (PFAS) is a collective name for approximately 4700 synthetic chemicals ubiquitous in the aquatic environment worldwide. They are used in a wide array of products and are found in living organisms around the world. Some PFAS have been associated with cancer, developmental toxicity, endocrine disruption, and other health effects. Only a fraction of PFAS are currently monitored and regulated and the presence and effects on aquatic organisms of many PFAS are largely unknown. The aim of this study is to investigate the health effects of environmentally relevant concentrations of PFAS on aquatic organisms at different consumer trophic levels through a systematic review and meta-analysis. The main result shows that PFAS in concentrations up to 13.5 µg/L have adverse effects on body size variables for secondary consumers. However, no significant effects on liver or gonad somatic indices and neither on fecundity were found. In addition, the results show that there are large research gaps for PFAS effects on different organisms in aquatic environments at environmentally relevant concentrations. Most studies have been performed on secondary consumers and there is a substantial lack of studies on other consumers in aquatic ecosystems.


Assuntos
Fluorocarbonos , Fluorocarbonos/análise , Organismos Aquáticos , Ecossistema
4.
Aquat Toxicol ; 207: 142-152, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30572174

RESUMO

The synthetic estrogen 17α-ethinylestradiol (EE2), ubiquitous in the aquatic environment and commonly detected in sewage effluents, interferes with the endocrine system in multiple ways. Exposure during sensitive windows of development causes persistent effects on fertility, reproductive and non-reproductive behavior in mammals and fish. In the present study, three-spined stickleback (Gasterosteus aculeatus) were exposed to nominal 0 and 20 ng/L EE2 from fertilization to 7 weeks post-hatch. After 8 months of remediation in clean water three non-reproductive behaviors, not previously analyzed in developmentally EE2-exposed progeny of wild-caught fish, were evaluated. Chemical analysis revealed that the nominal 0 and 20 ng/L exposure contained 5 and 30 ng/L EE2, respectively. Therefore, the use of control fish from previous experiments was necessary for comparisons. Fish exposed during development showed significant concentration-dependent reduction in anxiety-like behavior in the scototaxis (light/dark preference) test by means of shorter latency to first entrance to the white compartment, more visits in white, and longer total time in white compared to unexposed fish. In the novel tank test, developmental exposure significantly increased the number of transitions to the upper half of the aquaria. Exposure to EE2 during development did not alter shoal cohesion in the shoaling test compared with unexposed fish but fish exposed to 30 ng/L EE2 had significantly longer latency to leave the shoal and fewer transitions away from the shoal compared to fish exposed to 5 ng/L EE2. Skewed sex ratio with more females, sex reversal in genetic males as well as intersex in males was observed after exposure to 30, but not 5 ng/L EE2. In conclusion, EE2 exposure during development in three-spined stickleback resulted in persistent effects on anxiety-like behaviors. These long-term effects from developmental exposure are likely to be of higher relevance for natural populations than are short-term effects from adult exposure.


Assuntos
Comportamento Animal , Exposição Ambiental , Etinilestradiol/toxicidade , Feminização/induzido quimicamente , Reprodução/efeitos dos fármacos , Smegmamorpha/crescimento & desenvolvimento , Animais , Comportamento Animal/efeitos dos fármacos , Feminino , Gônadas/efeitos dos fármacos , Gônadas/patologia , Masculino , Razão de Masculinidade , Smegmamorpha/genética
5.
Aquat Toxicol ; 193: 9-17, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29017090

RESUMO

Sewage effluents contain pharmaceuticals, personal care products and industrial chemicals, exposing aquatic organisms to complex mixtures. The consequences of exposure to combinations of different classes of drugs in fish are largely unknown. In this study, we exposed adult zebrafish (Danio rerio) males and females for two weeks to low, environmentally relevant concentrations of the endocrine disrupting chemical 17α-etinylestradiol (EE2) and the selective serotonin re-uptake inhibitor (SSRI) citalopram, alone and in combination, and analyzed behaviors of importance for population fitness, scototaxis (light/dark preference), the novel tank test and shoal cohesion. Control water contained 0.4ng/L EE2 and the measured exposure concentrations were 0.9ng/L EE2 (nominal 0.1) and 1ng/L EE2 (nominal 0.5). The measured concentrations of citalopram were 0.1 (nominal 0.1) and 0.4µg/L (nominal 0.5). Both EE2 exposures increased anxiety in males in the scototaxis test, with significantly longer latency periods before entering and fewer visits to the white zone of the tank. The combined exposures (0.9ng/L EE2+0.1µg/L citalopram and 1ng/L EE2+0.4µg/L citalopram) resulted in abolishment of effects of EE2, with shorter latency period and more transitions to white than for fish exposed to EE2 alone. In the novel tank test, the results surprisingly indicated lower anxiety after both EE2 and citalopram exposure. Significantly more transitions to the upper half of the tank observed in males exposed to 0.1µg/L citalopram alone compared to control males. Males exposed to EE2 (0.9ng/L) had shorter latency period to the upper half. Combination exposure resulted in a longer latency and fewer transitions to the upper half compared to both control, EE2- and citalopram-exposed males. Males exposed to the combination spent significantly less time in the upper half than males EE2 or citalopram-exposed males. Females exposed to 1ng/L EE2 had fewer transitions to the upper half than the control group and females exposed to 0.4µg/L citalopram. In the shoaling test, males exposed to 0.1µg/L citalopram+0.9ng/L EE2 showed more transitions away from peers than males exposed to 0.1µg/L citalopram alone. In conclusion, low concentrations of EE2, closely above the predicted no effect concentration (NOEC) of 0.1ng/L, created anxiety-like behavior in zebrafish males. Citalopram showed marginal effects at these low concentrations but in the combination exposure the behavioral effects of EE2 were abolished. This is an initial effort to understand the effects of cocktails of anthropogenic substances contaminating aquatic environments.


Assuntos
Citalopram/toxicidade , Disruptores Endócrinos/toxicidade , Etinilestradiol/toxicidade , Inibidores Seletivos de Recaptação de Serotonina/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Misturas Complexas , Feminino , Masculino , Atividade Motora/efeitos dos fármacos , Tempo de Reação , Fatores Sexuais
6.
Front Behav Neurosci ; 11: 69, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28473760

RESUMO

The synthetic estrogen 17α-ethinylestradiol (EE2) is an endocrine disrupting compound of concern due to its persistence and widespread presence in the aquatic environment. Effects of developmental exposure to low concentrations of EE2 in fish on reproduction and behavior not only persisted to adulthood, but have also been observed to be transmitted to several generations of unexposed progeny. To investigate the possible biological mechanisms of the persistent anxiogenic phenotype, we exposed zebrafish embryos for 80 days post fertilization to 0, 3, and 10 ng/L EE2 (measured concentrations 2.14 and 7.34 ng/L). After discontinued exposure, the animals were allowed to recover for 120 days in clean water. Adult males and females were later tested for changes in stress response and shoal cohesion, and whole-brain gene expression was analyzed with RNA sequencing. The results show increased anxiety in the novel tank and scototaxis tests, and increased shoal cohesion in fish exposed during development to EE2. RNA sequencing revealed 34 coding genes differentially expressed in male brains and 62 in female brains as a result of EE2 exposure. Several differences were observed between males and females in differential gene expression, with only one gene, sv2b, coding for a synaptic vesicle protein, that was affected by EE2 in both sexes. Functional analyses showed that in female brains, EE2 had significant effects on pathways connected to the circadian rhythm, cytoskeleton and motor proteins and synaptic proteins. A large number of non-coding sequences including 19 novel miRNAs were also differentially expressed in the female brain. The largest treatment effect in male brains was observed in pathways related to cholesterol biosynthesis and synaptic proteins. Circadian rhythm and cholesterol biosynthesis, previously implicated in anxiety behavior, might represent possible candidate pathways connecting the transcriptome changes to the alterations to behavior. Further the observed alteration in expression of genes involved in synaptogenesis and synaptic function may be important for the developmental modulations resulting in an anxiety phenotype. This study represents an initial survey of the fish brain transcriptome by RNA sequencing after long-term recovery from developmental exposure to an estrogenic compound.

7.
Gen Comp Endocrinol ; 223: 66-72, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26431611

RESUMO

Environmental contaminants can cause alterations that can be transgenerationally transmitted to subsequent generations. Estrogens are among those contaminants shown to induce heritable changes that persist over generations in mammals. Results in other vertebrates are few. We have analyzed the effects on anxiety of 17α-ethinyl estradiol (EE2) in the F1 and F2 generations in guppies, Poecilia reticulata, obtained from F0 fish maternally exposed to 0 or 20ng/L EE2 until birth. F0 males and females were bred with fish of the same treatment but different families producing F1 offspring. Behavior in the novel tank test at 6months revealed that males with EE2-exposed parents had significantly longer latency to the upper half of the tank than control males, while no EE2 effects were observed in females. Also in F2, obtained from F1 as above, males in the EE2 group had longer latency time compared to control males, with no differences due to EE2-exposure of F0 observed in females. In the scototaxis (light/dark preference) test, latency to first transition to black compartment and total transitions to black were significantly altered in females due to EE2 exposure of F0 while the total time in black was higher in males with EE2-exposed F0 compared with controls. The increased anxiety in the F2 generation demonstrates a transgenerational anxiety phenotype and shows that non-reproductive behavior can be transgenerationally modified by estrogens in fish.


Assuntos
Ansiedade/induzido quimicamente , Comportamento Animal/efeitos dos fármacos , Estrogênios/farmacologia , Etinilestradiol/farmacologia , Animais , Feminino , Masculino , Poecilia , Fatores Sexuais
8.
Horm Behav ; 73: 30-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26072466

RESUMO

Exposure to estrogenic endocrine disruptors (EDCs) during development affects fertility, reproductive and non-reproductive behavior in mammals and fish. These effects can also be transferred to coming generations. In fish, the effects of developmental EDC exposure on non-reproductive behavior are less well studied. Here, we analyze the effects of 17α-ethinylestradiol (EE2) on anxiety, shoaling behavior and fertility in zebrafish after developmental treatment and remediation in clean water until adulthood. Zebrafish embryos were exposed from day 1 to day 80 post fertilization to actual concentrations of 1.2 and 1.6ng/L EE2. After remediation for 82days non-reproductive behavior and fertilization success were analyzed in both sexes. Males and females from the 1.2ng/L group, as well as control males and females, were bred, and behavior of the untreated F1 offspring was tested as adults. Developmental treatment with 1.2 and 1.6ng/L EE2 significantly increased anxiety in the novel tank test and increased shoaling intensity in both sexes. Fertilization success was significantly reduced by EE2 in both sexes when mated with untreated fish of opposite sex. Progeny of fish treated with 1.2ng/L EE2 showed increased anxiety in the novel tank test and increased light avoidance in the scototaxis test compared to control offspring. In conclusion, developmental exposure of zebrafish to low doses of EE2 resulted in persistent changes in behavior and fertility. The behavior of unexposed progeny was affected by their parents' exposure, which might suggest transgenerational effects.


Assuntos
Ansiedade/induzido quimicamente , Comportamento Animal/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Disruptores Endócrinos/farmacologia , Etinilestradiol/farmacologia , Fertilidade/efeitos dos fármacos , Peixe-Zebra/embriologia , Animais , Embrião não Mamífero , Exposição Ambiental , Feminino , Fertilização , Masculino , Reprodução/efeitos dos fármacos , Peixe-Zebra/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA