Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 878: 163132, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37001651

RESUMO

The extensive radioactive fallout resulting from the 1986 Chornobyl accident caused tree death near the nuclear power plant and perturbed trees communities throughout the whole Chornobyl exclusion zone. Thirty years into the post-accident period, the radiation continues to exert its fatal effects on the surviving trees. However, to what extent the continuous multi-decadal radiation exposure has affected the radial tree growth and its sensitivity to climate variation remains unascertained. In this comparative study, we measure the Scots pine radial growth and quantify its response to climate at two sites along the western track of the nuclear fallout that received significantly different doses of radiation in 1986. The common features of the two sites allow us to disentangle and intercompare the effects of sub-lethal and moderate radiation doses on the pine's growth and climatic sensitivity. We extend the response function analysis by making the first use of the Full-Duration at Half-Maximum FDHM method in dendrochronology and apply the double-moving window approach to detect the main patterns of the growth-to-climate relationships and their temporal evolution. The stand exposed to sub-lethal radiation shows a significant radial growth reduction in 1986 with a deflection period of one year. The stand exposed to moderate radiation, in contrast, demonstrates no significant decrease in growth either in 1986 or in the following years. Beyond the radiation effects, the moving response function and FDHM enabled us to detect several mutual patterns in the growth-to-climate relationships, which are seemingly unrelated to the nuclear accident. To advance our predictive understanding of the response of forest ecosystems to a massive radioactive contamination, future studies should include quantitative wood anatomy techniques.


Assuntos
Acidente Nuclear de Chernobyl , Pinus sylvestris , Ecossistema , Madeira , Florestas
2.
Genome ; 60(9): 778-790, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28750176

RESUMO

Quercus rubra has been introduced in Europe since the end of the 17th century. It is widely distributed today across this continent and considered invasive in some countries. Here, we investigated the distribution of genetic diversity of both native and introduced populations with the aim of tracing the origin of introduced populations. A large sampling of 883 individuals from 73 native and 38 European locations were genotyped at 69 SNPs. In the natural range, we found a continuous geographic gradient of variation with a predominant latitudinal component. We explored the existence of ancestral populations by performing Bayesian clustering analysis and found support for two or three ancestral genetic clusters. Approximate Bayesian Computations analyses based on these two or three clusters support recent extensive secondary contacts between them, suggesting that present-day continuous genetic variation resulted from recent admixture. In the introduced range, one main genetic cluster was not recovered in Europe, suggesting that source populations were preferentially located in the northern part of the natural distribution. However, our results cannot refute the introduction of populations from the southern states that did not survive in Europe.


Assuntos
Espécies Introduzidas , Quercus/genética , Teorema de Bayes , DNA de Plantas , Europa (Continente) , Variação Genética , Técnicas de Genotipagem , Polimorfismo de Nucleotídeo Único , Estados Unidos
3.
Ecol Evol ; 6(20): 7263-7275, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-28725396

RESUMO

Four North American trees are becoming invasive species in Western Europe: Acer negundo, Prunus serotina, Quercus rubra, and Robinia pseudoacacia. However, their present and future potential risks of invasion have not been yet evaluated. Here, we assess niche shifts between the native and invasive ranges and the potential invasion risk of these four trees in Western Europe. We estimated niche conservatism in a multidimensional climate space using niche overlap Schoener's D, niche equivalence, and niche similarity tests. Niche unfilling and expansion were also estimated in analogous and nonanalogous climates. The capacity for predicting the opposite range between the native and invasive areas (transferability) was estimated by calibrating species distribution models (SDMs) on each range separately. Invasion risk was estimated using SDMs calibrated on both ranges and projected for 2050 climatic conditions. Our results showed that native and invasive niches were not equivalent with low niche overlap for all species. However, significant similarity was found between the invasive and native ranges of Q. rubra and R. pseudoacacia. Niche expansion was lower than 15% for all species, whereas unfilling ranged from 7 to 56% when it was measured using the entire climatic space and between 5 and 38% when it was measured using analogous climate only. Transferability was low for all species. SDMs calibrated over both ranges projected high habitat suitability in Western Europe under current and future climates. Thus, the North American and Western European ranges are not interchangeable irrespective of the studied species, suggesting that other environmental and/or biological characteristics are shaping their invasive niches. The current climatic risk of invasion is especially high for R. pseudoacacia and A. negundo. In the future, the highest risks of invasion for all species are located in Central and Northern Europe, whereas the risk is likely to decrease in the Mediterranean basin.

4.
Ecol Evol ; 6(20): 7323-7333, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-28725400

RESUMO

The RADseq technology allows researchers to efficiently develop thousands of polymorphic loci across multiple individuals with little or no prior information on the genome. However, many questions remain about the biases inherent to this technology. Notably, sequence misalignments arising from paralogy may affect the development of single nucleotide polymorphism (SNP) markers and the estimation of genetic diversity. We evaluated the impact of putative paralog loci on genetic diversity estimation during the development of SNPs from a RADseq dataset for the nonmodel tree species Robinia pseudoacacia L. We sequenced nine genotypes and analyzed the frequency of putative paralogous RAD loci as a function of both the depth of coverage and the mismatch threshold allowed between loci. Putative paralogy was detected in a very variable number of loci, from 1% to more than 20%, with the depth of coverage having a major influence on the result. Putative paralogy artificially increased the observed degree of polymorphism and resulting estimates of diversity. The choice of the depth of coverage also affected diversity estimation and SNP validation: A low threshold decreased the chances of detecting minor alleles while a high threshold increased allelic dropout. SNP validation was better for the low threshold (4×) than for the high threshold (18×) we tested. Using the strategy developed here, we were able to validate more than 80% of the SNPs tested by means of individual genotyping, resulting in a readily usable set of 330 SNPs, suitable for use in population genetics applications.

5.
PLoS One ; 8(11): e80443, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260391

RESUMO

A major unknown in the context of current climate change is the extent to which populations of slowly migrating species, such as trees, will track shifting climates. Niche modelling generally predicts substantial northward shifts of suitable habitats. There is therefore an urgent need for field-based forest observations to corroborate these extensive model simulations. We used forest inventory data providing presence/absence information from just over a century (1880-2010) for a Mediterranean species (Quercus ilex) in forests located at the northern edge of its distribution. The main goals of the study were (i) to investigate whether this species has actually spread into new areas during the Anthropocene period and (ii) to provide a direct estimation of tree migration rate. We show that Q. ilex has colonised substantial new areas over the last century. However, the maximum rate of colonisation by this species (22 to 57 m/year) was much slower than predicted by the models and necessary to follow changes in habitat suitability since 1880. Our results suggest that the rates of tree dispersion and establishment may also be too low to track shifts in bioclimatic envelopes in the future. The inclusion of contemporary, rather than historical, migration rates into models should improve our understanding of the response of species to climate change.


Assuntos
Quercus/fisiologia , Clima , Mudança Climática , Ecossistema , Modelos Teóricos , Estudos Retrospectivos , Árvores/fisiologia
6.
PLoS One ; 8(9): e74239, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040212

RESUMO

Phenotypic plasticity is a key mechanism associated with the spread of exotic plants and previous studies have found that invasive species are generally more plastic than co-occurring species. Comparatively, the evolution of phenotypic plasticity in plant invasion has received less attention, and in particular, the genetic basis of plasticity is largely unexamined. Native from North America, Acer negundo L. is aggressively impacting the riparian forests of southern and eastern Europe thanks to higher plasticity relative to co-occurring native species. We therefore tested here whether invasive populations have evolved increased plasticity since introduction. The performance of 1152 seedlings from 8 native and 8 invasive populations was compared in response to nutrient availability. Irrespective of nutrients, invasive populations had higher growth and greater allocation to above-ground biomass relative to their native conspecifics. More importantly, invasive genotypes did not show increased plasticity in any of the 20 traits examined. This result suggests that the high magnitude of plasticity to nutrient variation of invasive seedlings might be pre-adapted in the native range. Invasiveness of A. negundo could be explained by higher mean values of traits due to genetic differentiation rather than by evolution of increased plasticity.


Assuntos
Acer/crescimento & desenvolvimento , Adaptação Fisiológica , Espécies Introduzidas , Fenótipo , Plântula/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Acer/anatomia & histologia , Acer/genética , Evolução Biológica , Biomassa , Ecossistema , Europa Oriental , Genótipo , América do Norte , Dispersão Vegetal , Plântula/anatomia & histologia , Plântula/genética , Especificidade da Espécie , Árvores/anatomia & histologia , Árvores/genética
7.
Tree Physiol ; 33(7): 672-83, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23658197

RESUMO

Hydraulic failure is one of the main causes of tree mortality in conditions of severe drought. Resistance to cavitation is known to be strongly related to drought tolerance and species survival in conifers, but the threshold of water-stress-induced embolism leading to catastrophic xylem dysfunction in angiosperms has been little studied. We investigated the link between drought tolerance, survival and xylem cavitation resistance in five angiosperm tree species known to have contrasting desiccation resistance thresholds. We exposed seedlings in a greenhouse to severe drought to generate extreme water stress. We monitored leaf water potential, total plant water loss rate, leaf transpiration, stomatal conductance and CO2 assimilation rate during drought exposure and after rewatering (recovery phase). The time required for the recovery of 50% of the maximum value of a given ecophysiological variable after rewatering was used to determine the critical water potential corresponding to the threshold beyond which the plant failed to recover. We also investigated the relationship between this potential and stem xylem cavitation resistance, as assessed from vulnerability curves. This minimum recoverable water potential was consistent between ecophysiological variables and varied considerably between species, from -3.4 to -6.0 MPa. This minimum recoverable water potential was strongly correlated with P50 and P88, the pressures inducing 50 and 88% losses of stem hydraulic conductance, respectively. Moreover, the embolism threshold leading to irreversible drought damage was found to be close to 88%, rather than the 50% previously reported for conifers. Hydraulic failure leading to irreversible drought-induced global dysfunction in angiosperm tree species occurred at a very high level of xylem embolism, possibly reflecting the physiological characteristics of their stem water-transport system.


Assuntos
Fagus/fisiologia , Transpiração Vegetal/fisiologia , Populus/fisiologia , Quercus/fisiologia , Xilema/fisiologia , Desidratação , Secas , Europa (Continente) , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Árvores , Água/fisiologia
8.
BMC Ecol ; 11: 28, 2011 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-22115342

RESUMO

BACKGROUND: To identify the determinants of invasiveness, comparisons of traits of invasive and native species are commonly performed. Invasiveness is generally linked to higher values of reproductive, physiological and growth-related traits of the invasives relative to the natives in the introduced range. Phenotypic plasticity of these traits has also been cited to increase the success of invasive species but has been little studied in invasive tree species. In a greenhouse experiment, we compared ecophysiological traits between an invasive species to Europe, Acer negundo, and early- and late-successional co-occurring native species, under different light, nutrient availability and disturbance regimes. We also compared species of the same species groups in situ, in riparian forests. RESULTS: Under non-limiting resources, A. negundo seedlings showed higher growth rates than the native species. However, A. negundo displayed equivalent or lower photosynthetic capacities and nitrogen content per unit leaf area compared to the native species; these findings were observed both on the seedlings in the greenhouse experiment and on adult trees in situ. These physiological traits were mostly conservative along the different light, nutrient and disturbance environments. Overall, under non-limiting light and nutrient conditions, specific leaf area and total leaf area of A. negundo were substantially larger. The invasive species presented a higher plasticity in allocation to foliage and therefore in growth with increasing nutrient and light availability relative to the native species. CONCLUSIONS: The higher level of plasticity of the invasive species in foliage allocation in response to light and nutrient availability induced a better growth in non-limiting resource environments. These results give us more elements on the invasiveness of A. negundo and suggest that such behaviour could explain the ability of A. negundo to outperform native tree species, contributes to its spread in European resource-rich riparian forests and impedes its establishment under closed-canopy hardwood forests.


Assuntos
Acer/fisiologia , Meio Ambiente , Espécies Introduzidas , Fenótipo , Acer/anatomia & histologia , Acer/crescimento & desenvolvimento , Biomassa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...