Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Funct Biomater ; 10(3)2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31269673

RESUMO

Cell scaffolds are often used in cell transplantation as they provide a solid structural support to implanted cells and can be bioengineered to mimic the native extracellular matrix. Gadolinium fluoride nanoparticles (Gd-NPs) as a contrast agent for Magnetic Resonance Imaging (MRI) were incorporated into poly(lactide-co-glycolide)/chitosan scaffolds to obtain Imaging Labelled Cell Scaffolds (ILCSs), having the shape of hollow spherical/ellipsoidal particles (200-600 µm diameter and 50-80 µm shell thickness). While Gd-NPs incorporated into microparticles do not provide any contrast enhancement in T1-weighted (T1w) MR images, ILCSs can release Gd-NPs in a controlled manner, thus activating MRI contrast. ILCSs seeded with human mesenchymal stromal cells (hMSCs) were xenografted subcutaneously into either immunocompromised and immunocompetent mice without any immunosuppressant treatments, and the transplants were followed-up in vivo by MRI for 18 days. Immunocompromised mice showed a progressive activation of MRI contrast within the implants due to the release of Gd-NPs in the extracellular matrix. Instead, immunocompetent mice showed poor activation of MRI contrast due to the encapsulation of ILCSs within fibrotic capsules and to the scavenging of released Gd-NPs by phagocytic cells. In conclusion, the MRI follow-up of cell xenografts can report the host cell response to the xenograft. However, it does not strictly report on the viability of transplanted hMSCs.

2.
ACS Omega ; 3(7): 8097-8103, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30087935

RESUMO

Recent research results report that extracellular vesicles (EVs) have a central role in both physiological and pathological processes involving intercellular communication. Herein, a simple EVs labeling procedure based on the metabolic labeling of secreting cells (mesenchymal stroma cells, MSCs) with a fluorescein-containing bio-orthogonal dye is described. This procedure was carried out by incubating cells for 72 h with tetraacetylated N-azidoacetyl-d-mannosamine (Ac4ManNAz), a modified sugar containing an azido group that, upon incorporation on the external surface of the cytoplasmatic cell membrane, is specifically conjugated with cyclooctyne-modified fluorescein isothiocyanate (ADIBO-FITC). MSCs released fluorescent EVs did not need any further purification. Finally, cellular uptake and tracking of the fluorescein-labeled EVs were successfully assessed by targeting experiments with MSCs. The method appears of general applicability and it may be very useful opening new horizon on diagnostic and therapeutic protocols exploiting EVs.

3.
Eur J Pharmacol ; 790: 83-91, 2016 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-27375075

RESUMO

Extracellular vesicles (EVs) appear as important actors in cell-to-cell communication. EV content is characterized by proteins and RNA species that dynamically reflect cell and tissue state. Urinary EVs in particular may act in inter-nephron communication with possible beneficial or detrimental effects. Increasing interest is addressed to the pharmacological properties of EVs as a cell-free therapy, since several of the effects crAQ/tgqcedited to stem cells have been recapitulated by administration of their EVs. Preclinical data in models of renal damage indicate a general regenerative potential of EVs derived from mesenchymal stromal cells of different sources, including bone marrow, fetal tissues, urine and kidney. In this review we will discuss the results on the effect of EVs in repair of acute and chronic renal injury, and the mechanisms involved. In addition, we will analyse the strategies for EV pharmacological applications in renal regenerative medicine and limits and benefits involved.


Assuntos
Vesículas Extracelulares/metabolismo , Rim/citologia , Rim/fisiologia , Regeneração , Animais , Comunicação Celular/efeitos dos fármacos , Terapia Baseada em Transplante de Células e Tecidos , Vesículas Extracelulares/efeitos dos fármacos , Humanos , Regeneração/efeitos dos fármacos
4.
Chemistry ; 22(23): 7716-20, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27037861

RESUMO

The redox microenvironment within a cell graft can be considered as an indicator to assess whether the graft is metabolically active or hypoxic. We present a redox-responsive MRI probe based on porous silica microparticles whose surface has been decorated with a Gd-chelate through a disulphide bridge. Such microparticles are designed to be interspersed with therapeutic cells within a biocompatible hydrogel. The onset of reducing conditions within the hydrogel is paralleled by an increased clearance of Gd, that can be detected by MRI.


Assuntos
Meios de Contraste/química , Gadolínio/química , Imageamento por Ressonância Magnética , Microesferas , Dióxido de Silício/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Terapia Baseada em Transplante de Células e Tecidos , Colágeno/química , Dissulfetos/química , Humanos , Ácido Hialurônico/química , Hidrogéis/química , Oxirredução , Porosidade , Propriedades de Superfície
5.
Physiol Rep ; 2(5): e12009, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24793983

RESUMO

Abstract Recent approaches of regenerative medicine can offer a therapeutic option for patients undergoing acute kidney injury. In particular, mesenchymal stem cells were shown to ameliorate renal function and recovery after acute damage. We here evaluated the protective effect and localization of CD133(+) renal progenitors from the human inner medulla in a model of glycerol-induced acute tubular damage and we compared the results with those obtained with bone marrow-derived mesenchymal stem cells. We found that CD133(+) progenitor cells promoted the recovery of renal function, preventing tubular cell necrosis and stimulating resident cell proliferation and survival, similar to mesenchymal stem cells. In addition, by optical imaging analysis, CD133(+) progenitor cells accumulated within the renal tissue, and a reduced entrapment in lung, spleen, and liver was observed. Mesenchymal stem cells were detectable at similar levels in the renal tissue, but a higher signal was present in extrarenal organs. Both cell types produced several cytokines/growth factors, suggesting that a combination of different mediators is involved in their biological action. These results indicate that human CD133(+) progenitor cells are renotropic and able to improve renal regeneration in acute kidney injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...