Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(7): 478, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961086

RESUMO

A recent approach to promote central nervous system (CNS) regeneration after injury or disease is direct conversion of somatic cells to neurons. This is achieved by transduction of viral vectors that express neurogenic transcription factors. In this work we propose adult human mucosal olfactory ensheathing glia (hmOEG) as a candidate for direct reprogramming to neurons due to its accessibility and to its well-characterized neuroregenerative capacity. After induction of hmOEG with the single neurogenic transcription factor NEUROD1, the cells under study exhibited morphological and immunolabeling neuronal features, fired action potentials and expressed glutamatergic and GABAergic markers. In addition, after engraftment of transduced hmOEG cells in the mouse hippocampus, these cells showed specific neuronal labeling. Thereby, if we add to the neuroregenerative capacity of hmOEG cultures the conversion to neurons of a fraction of their population through reprogramming techniques, the engraftment of hmOEG and hmOEG-induced neurons could be a procedure to enhance neural repair after central nervous system injury.


Assuntos
Neuroglia , Neurônios , Humanos , Animais , Neuroglia/metabolismo , Neuroglia/citologia , Neurônios/metabolismo , Neurônios/citologia , Camundongos , Adulto , Mucosa Olfatória/citologia , Mucosa Olfatória/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem da Célula , Hipocampo/citologia , Hipocampo/metabolismo , Bulbo Olfatório/citologia , Bulbo Olfatório/metabolismo , Células Cultivadas
2.
Front Mol Neurosci ; 16: 1110356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910262

RESUMO

An approach to generate new neurons after central nervous system injury or disease is direct reprogramming of the individual's own somatic cells into differentiated neurons. This can be achieved either by transduction of viral vectors that express neurogenic transcription factors and/or through induction with small molecules, avoiding introducing foreign genetic material in target cells. In this work, we propose olfactory ensheathing glia (OEG) as a candidate for direct reprogramming to neurons with small molecules due to its well-characterized neuro-regenerative capacity. After screening different combinations of small molecules in different culture conditions, only partial reprogramming was achieved: induced cells expressed neuronal markers but lacked the ability of firing action potentials. Our work demonstrates that direct conversion of adult olfactory ensheathing glia to mature, functional neurons cannot be induced only with pharmacological tools.

3.
Front Cell Dev Biol ; 11: 1328261, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188022

RESUMO

In the last decades, mesenchymal stem cells (MSCs) have become the cornerstone of cellular therapy due to their unique characteristics. Specifically human placenta-derived mesenchymal stem cells (hPMSCs) are highlighted for their unique features, including ease to isolate, non-invasive techniques for large scale cell production, significant immunomodulatory capacity, and a high ability to migrate to injuries. Researchers are exploring innovative techniques to overcome the low regenerative capacity of Central Nervous System (CNS) neurons, with one promising avenue being the development of tailored mesenchymal stem cell therapies capable of promoting neural repair and recovery. In this context, we have evaluated hPMSCs as candidates for CNS lesion regeneration using a skillful co-culture model system. Indeed, we have demonstrated the hPMSCs ability to stimulate damaged rat-retina neurons regeneration by promoting axon growth and restoring neuronal activity both under normoxia and hypoxia conditions. With our model we have obtained neuronal regeneration values of 10%-14% and axonal length per neuron rates of 19-26, µm/neuron. To assess whether the regenerative capabilities of hPMSCs are contact-dependent effects or it is mediated through paracrine mechanisms, we carried out transwell co-culture and conditioned medium experiments confirming the role of secreted factors in axonal regeneration. It was found that hPMSCs produce brain derived, neurotrophic factor (BDNF), nerve-growth factor (NGF) and Neurotrophin-3 (NT-3), involved in the process of neuronal regeneration and restoration of the physiological activity of neurons. In effect, we confirmed the success of our treatment using the patch clamp technique to study ionic currents in individual isolated living cells demonstrating that in our model the regenerated neurons are electrophysiologically active, firing action potentials. The outcomes of our neuronal regeneration studies, combined with the axon-regenerating capabilities exhibited by mesenchymal stem cells derived from the placenta, present a hopeful outlook for the potential therapeutic application of hPMSCs in the treatment of neurological disorders.

4.
J Vis Exp ; (165)2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33191937

RESUMO

Olfactory ensheathing glia (OEG) cells are localized all the way from the olfactory mucosa to and into the olfactory nerve layer (ONL) of the olfactory bulb. Throughout adult life, they are key for axonal growing of newly generated olfactory neurons, from the lamina propria to the ONL. Due to their pro-regenerative properties, these cells have been used to foster axonal regeneration in spinal cord or optic nerve injury models. We present an in vitro model to assay and measure OEG neuroregenerative capacity after neural injury. In this model, reversibly immortalized human OEG (ihOEG) is cultured as a monolayer, retinas are extracted from adult rats and retinal ganglion neurons (RGN) are cocultured onto the OEG monolayer. After 96 h, axonal and somatodendritic markers in RGNs are analyzed by immunofluorescence and the number of RGNs with axon and the mean axonal length/neuron are quantified. This protocol has the advantage over other in vitro assays that rely on embryonic or postnatal neurons, that it evaluates OEG neuroregenerative properties in adult tissue. Also, it is not only useful for assessing the neuroregenerative potential of ihOEG but can be extended to different sources of OEG or other glial cells.


Assuntos
Axônios/fisiologia , Axotomia , Técnicas de Cocultura/métodos , Modelos Biológicos , Regeneração Nervosa/fisiologia , Neuroglia/citologia , Mucosa Olfatória/citologia , Células Ganglionares da Retina/citologia , Animais , Linhagem Celular , Humanos , Masculino , Ratos Wistar
5.
Glia ; 66(7): 1267-1301, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29330870

RESUMO

The prospects of achieving regeneration in the central nervous system (CNS) have changed, as most recent findings indicate that several species, including humans, can produce neurons in adulthood. Studies targeting this property may be considered as potential therapeutic strategies to respond to injury or the effects of demyelinating diseases in the CNS. While CNS trauma may interrupt the axonal tracts that connect neurons with their targets, some neurons remain alive, as seen in optic nerve and spinal cord (SC) injuries (SCIs). The devastating consequences of SCIs are due to the immediate and significant disruption of the ascending and descending spinal pathways, which result in varying degrees of motor and sensory impairment. Recent therapeutic studies for SCI have focused on cell transplantation in animal models, using cells capable of inducing axon regeneration like Schwann cells (SchCs), astrocytes, genetically modified fibroblasts and olfactory ensheathing glia cells (OECs). Nevertheless, and despite the improvements in such cell-based therapeutic strategies, there is still little information regarding the mechanisms underlying the success of transplantation and regarding any secondary effects. Therefore, further studies are needed to clarify these issues. In this review, we highlight the properties of OECs that make them suitable to achieve neuroplasticity/neuroregeneration in SCI. OECs can interact with the glial scar, stimulate angiogenesis, axon outgrowth and remyelination, improving functional outcomes following lesion. Furthermore, we present evidence of the utility of cell therapy with OECs to treat SCI, both from animal models and clinical studies performed on SCI patients, providing promising results for future treatments.


Assuntos
Transplante de Células , Neuroglia/transplante , Traumatismos da Medula Espinal/terapia , Animais , Humanos , Neuroglia/citologia , Bulbo Olfatório/citologia , Mucosa Olfatória/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...