Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromol Biosci ; 20(7): e2000115, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32484299

RESUMO

Peptide nanotubes are promising materials for a variety of biomedical applications with ultrashort (≤7 amino acids) forms providing particular promise for clinical translation. The manufacture of peptide nanotubes has, however, been associated with toxic organic solvents restricting clinical use. The purpose of this work is to formulate dipeptide nanotubes using mild techniques easily translated to industrial upscale and to characterize their physiochemical and biological properties. Phenylalanine-phenylalanine variants can be successfully formulated using distilled water as demonstrated here. Formulations are homogenous in shape (tubular), with apparent size (50-260 nm) and a zeta potential of up to +30 mV. L-(H2 N-FF-COOH), and D-enantiomers (H2 N-ff-COOH) demonstrate no toxicity against glioblastoma cells and are explored for ability to deliver a model hydrophilic molecule, sodium fluorescein, at pH 5.5 (tumor) and 7.4 (physiological). Peptide nanotubes loaded with >85% sodium fluorescein, demonstrate burst release characteristics, fitting the Weibull model of drug release. This research provides important data contributing to the pharmaceutical formulation of peptide nanotubes as drug delivery platforms for hydrophilic drugs.


Assuntos
Dipeptídeos/química , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Nanotubos/química , Linhagem Celular Tumoral , Dicroísmo Circular , Liberação Controlada de Fármacos , Humanos , Tamanho da Partícula , Eletricidade Estática
2.
J Med Chem ; 63(3): 1328-1336, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31940202

RESUMO

Malignant melanoma is an aggressive skin cancer with poor survival outcomes for patients diagnosed at an advanced stage. While targeted serine/threonine-protein kinase B-Raf (BRAF) and immune checkpoint inhibitors have improved survival outcomes for a proportion of these patients, response rates remain variable. There is a need, therefore, for more effective treatments to bolster the options available for melanoma patients. In this manuscript, we covalently attached Rose Bengal (RB) to the amphipathic peptide (AMP) C(KLAKLAK)2 and determined the effectiveness of the resulting RB-C(KLAKLAK)2 conjugate as a photodynamic therapy (PDT) sensitizer. RB-C(KLAKLAK)2-mediated PDT treatment of subcutaneous B16-F10-Luc2 tumors in C57 mice resulted in lesions that were 479% smaller at the end of the study than animals treated with RB-mediated PDT. The synergistic effect between RB and C(KLAKLAK)2 has been attributed to the AMP sensitizing cells to reactive oxygen species (ROS), making them more susceptible to ROS-induced oxidative stress.


Assuntos
Antineoplásicos/uso terapêutico , Melanoma/tratamento farmacológico , Peptídeos/uso terapêutico , Fármacos Fotossensibilizantes/uso terapêutico , Rosa Bengala/análogos & derivados , Rosa Bengala/uso terapêutico , Sequência de Aminoácidos , Animais , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Camundongos SCID , Necrose/induzido quimicamente , Peptídeos/síntese química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/síntese química , Espécies Reativas de Oxigênio/metabolismo
3.
Acta Biomater ; 77: 96-105, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30031161

RESUMO

Biofilms present a major problem to industry and healthcare worldwide. Composed of a population of surface-attached microbial cells surrounded by a protective extracellular polysaccharide matrix, they are responsible for increased tolerance to antibiotics, treatment failure and a resulting rise in antimicrobial resistance. Here we demonstrate that self-assembled peptide nanostructures composed of a diphenylalanine motif provide sufficient antibacterial activity to eradicate mature biofilm forms of bacteria widely implicated in hospital infections. Modification of terminal functional groups to amino (-NH2), carboxylic acid (-COOH) or both modalities, and switch to d-isomers, resulted in changes in antibacterial selectivity and mammalian cell toxicity profiles. Of the three peptide nanotubes structures studied (NH2-FF-COOH, NH2-ff-COOH and NH2-FF-NH2), NH2-FF-COOH demonstrated the most potent activity against both planktonic (liquid, free-floating) and biofilm forms of bacteria, possessing minimal mammalian cell toxicity. NH2-FF-COOH resulted in greater than 3 Log10 CFU/mL viable biofilm reduction (>99.9%) at 5 mg/mL and total biofilm kill at 10 mg/mL against Staphylococcus aureus after 24 h exposure. Scanning electron microscopy proved that antibiofilm activity was primarily due to the formation of ion channels and/or surfactant-like action, with NH2-FF-COOH and NH2-ff-COOH capable of degrading the biofilm matrix and disrupting cell membranes, leading to cell death in Gram-positive bacterial isolates. Peptide-based nanotubes are an exciting platform for drug delivery and engineering applications. This is the first report of using peptide nanotubes to eradicate bacterial biofilms and provides evidence of a new platform that may alleviate their negative impact throughout society. STATEMENT OF SIGNIFICANCE: We outline, for the first time, the antibiofilm activity of diphenylalanine (FF) peptide nanotubes. Biofilm bacteria exhibit high tolerance to antimicrobials 10-10,000 times that of free-flowing planktonic forms. Biofilm infections are difficult to treat using conventional antimicrobial agents, leading to a rise in antimicrobial resistance. We discovered nanotubes composed of NH2-FF-COOH demonstrated potent activity against staphylococcal biofilms implicated in hospital infections, resulting in complete kill at concentrations of 10 mg/mL. Carboxylic acid terminated FF nanotubes were able to destroy the exopolysaccharide architecture of staphylococcal biofilms expressing minimal toxicity, highlighting their potential for use in patients. Amidated (NH2-FF-NH2) forms demonstrated reduced antibiofilm efficacy and significant toxicity. These results contribute significantly to the development of innovative antibacterial technologies and peptide nanomaterials.


Assuntos
Biofilmes/crescimento & desenvolvimento , Nanotubos de Peptídeos/química , Fenilalanina/análogos & derivados , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/química , Anti-Infecciosos/química , Ácidos Carboxílicos/química , Membrana Celular/química , Sobrevivência Celular , Dipeptídeos , Sistemas de Liberação de Medicamentos , Fibroblastos/metabolismo , Hemólise , Espectroscopia de Ressonância Magnética , Camundongos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Permeabilidade , Fenilalanina/química , Polissacarídeos/química , Infecções Estafilocócicas/tratamento farmacológico
4.
Gels ; 4(2)2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-30674824

RESUMO

The threat of antimicrobial resistance to society is compounded by a relative lack of new clinically effective licensed therapies reaching patients over the past three decades. This has been particularly problematic within antifungal drug development, leading to a rise in fungal infection rates and associated mortality. This paper highlights the potential of an ultrashort peptide, (naphthalene-2-ly)-acetyl-diphenylalanine-dilysine-OH (NapFFKK-OH), encompassing hydrogel-forming and antifungal properties within a single peptide motif, thus overcoming formulation (e.g., solubility, drug loading) issues associated with many currently employed highly hydrophobic antifungals. A range of fungal susceptibility (colony counts) and cell cytotoxicity (MTS cell viability, LIVE/DEAD staining® with fluorescent microscopy, haemolysis) assays were employed. Scanning electron microscopy confirmed the nanofibrous architecture of our self-assembling peptide, existing as a hydrogel at concentrations of 1% w/v and above. Broad-spectrum activity was demonstrated against a range of fungi clinically relevant to infection (Aspergillus niger, Candida glabrata, Candida albicans, Candida parapsilosis and Candida dubliniensis) with greater than 4 log10 CFU/mL reduction at concentrations of 0.5% w/v and above. We hypothesise antifungal activity is due to targeting of anionic components present within fungal cell membranes resulting in membrane disruption and cell lysis. NapFFKK-OH demonstrated reduced toxicity against mammalian cells (NCTC 929, ARPE-19) suggesting increased selectivity for fungal cells. However, further studies relating to safety for systemic administration is required, given the challenges toxicity has presented in the wider context of antimicrobial peptide drug development. Overall this study highlights the promise of NapFFKK-OH hydrogels, particularly as a topical formulation for the treatment of fungal infections relating to the skin and eyes, or as a hydrogel coating for the prevention of biomaterial related infection.

5.
J Chem Inf Model ; 53(7): 1761-74, 2013 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-23789628

RESUMO

Selective polypharmacology, where a drug acts on multiple rather than a single molecular target involved in a disease, emerges to develop a structure-based system biology approach to design drugs selectively targeting a disease-active protein network. We focus on the bioaminergic receptors that belong to the group of G-protein-coupled receptors (GPCRs) and represent targets for therapeutic agents against schizophrenia and depression. Among them, it has been shown that the serotonin (5-HT(2A) and 5-HT6) and dopamine (D2 and D3) receptors induce a cognition-enhancing effect (group 1), while the histamine (H1) and serotonin (5-HT(2C)) receptors lead to metabolic side effects and the 5-HT(2B) serotonin receptor causes pulmonary hypertension (group 2). Thus, the problem arises to develop an approach that allows identifying drugs targeting only the disease-active receptors, i.e. group 1. The recent release of several crystal structures of the bioaminergic receptors, involving the D3 and H1 receptors, provides the possibility to model the structures of all receptors and initiate a study of the structural and dynamic context of selective polypharmacology. In this work, we use molecular dynamics simulations to generate a conformational space of the receptors and subsequently characterize its binding properties applying molecular probe mapping. All-against-all comparison of the generated probe maps of the selected diverse conformations of all receptors with the Tanimoto similarity coefficient (Tc) enable the separation of the receptors of group 1 from group 2. The pharmacophore built based on the Tc-selected receptor conformations, using the multiple probe maps discovers structural features that can be used to design molecules selective toward the receptors of group 1. The importance of several predicted residues to ligand selectivity is supported by the available mutagenesis and ligand structure-activity relationship studies. In addition, the Tc-selected conformations of the receptors for group 1 show good performance in isolation of known ligands from a random decoy. Our computational structure-based protocol to tackle selective polypharmacology of antipsychotic drugs could be applied for other diseases involving multiple drug targets, such as oncologic and infectious disorders.


Assuntos
Antipsicóticos/farmacologia , Simulação de Dinâmica Molecular , Terapia de Alvo Molecular , Polifarmacologia , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Avaliação Pré-Clínica de Medicamentos , Ligantes , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...