Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 8(25): 16009-15, 2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27258029

RESUMO

Pristine and boron-doped anatase TiO2 were prepared via a facile sol-gel method and the hydrothermal method for application as anode materials in sodium-ion batteries (SIBs). The sol-gel method leads to agglomerated TiO2, whereas the hydrothermal method is conducive to the formation of highly crystalline and discrete nanoparticles. The structure, morphology, and electrochemical properties were studied. The crystal size of TiO2 with boron doping is smaller than that of the nondoped crystals, which indicates that the addition of boron can inhibit the crystal growth. The electrochemical measurements demonstrated that the reversible capacity of the B-doped TiO2 is higher than that for the pristine sample. B-doping also effectively enhances the rate performance. The capacity of the B-doped TiO2 could reach 150 mAh/g at the high current rate of 2C and the capacity decay is only about 8 mAh/g over 400 cycles. The remarkable performance could be attributed to the lattice expansion resulting from B doping and the shortened Li(+) diffusion distance due to the nanosize. These results indicate that B-doped TiO2 can be a good candidate for SIBs.

2.
Inorg Chem ; 55(12): 5772-9, 2016 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-27227553

RESUMO

Combined synchrotron and neutron powder diffraction indicates that A3V4(PO4)6 (A = Mg, Mn, Fe, Co, Ni) compounds crystallize with triclinic P1̅ symmetry. Lattice parameters expand as expected with successive increases in the ionic radius of the A(2+) ion. Cation disorder on the octahedral sites increases as the ionic radii of A(2+) ion decreases. Direct-current magnetic susceptibility measurements indicate that all compounds with magnetic A(2+) ions order anti-ferromagnetically with transition temperatures ranging from 12 to 15 K. Effective magnetic moments for A3V4(PO4)6 (A = Mg, Mn, Fe, Co, Ni) are 5.16, 11.04, 10.08, 9.76, and 7.96 µB per formula unit, respectively, in line with calculated values for high-spin transition metal ions. With the exception of Co3V4(PO4)6 the ultraviolet-visible spectra are dominated by d-d transitions of the V(3+) ions. The striking emerald green color of Co3V4(PO4)6 arises from the combined effects of d-d transitions involving both V(3+) and Co(2+).

3.
Chem Commun (Camb) ; 51(48): 9809-12, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-25987231

RESUMO

A new electrolyte salt, sodium-difluoro(oxalato)borate (NaDFOB), was synthesized and studied, which enables excellent reversible capacity and high rate capability when used in Na/Na0.44MnO2 half cells. NaDFOB has excellent compatibility with various common solvents used in Na-ion batteries, in strong contrast to the solvent dependent performances of NaClO4 and NaPF6. In addition, NaDFOB possesses good stability and generates no toxic or dangerous products when exposed to air and water. All these properties demonstrate that NaDFOB could be used to prepare high performance electrolytes for emerging Na-ion batteries.

4.
J Manuf Process ; 16(4): 535-542, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25642151

RESUMO

More than 1.2 million people worldwide require regular hemodialysis therapy to treat end stage renal failure. Current hemodialysis systems are too expensive to support at-home hemodialysis where more frequent and longer duration treatment can lead to better patient outcomes. The key cost driver for hemodialysers is the cost of the hemodialysis membrane. Microchannel hemodialysers are smaller providing the potential to use significantly less membrane. Prior work has demonstrated the use of sealing bosses to form compression seals in microchannel hemodialysers. In this paper, estimates show that the percentage of the membrane utilized for mass transfer is highly dependent on the design and registration accuracy of adjacent blood and dialysate laminae. Efforts here focus on the development of a self-registration method to align polycarbonate laminae compatible with compression sealing schemes for membrane separation applications. Self-nesting registration methods were demonstrated with average registration accuracies of 11.4 ± 7.2 µm measured over a 50 mm scale. Analysis shows that the registration accuracy is constrained by tolerances in the embossing process. A dialysis test article was produced using the self-nesting registration method showing a measured average one-dimensional misregistration of 18.5 µm allowing a potential 41.4% of the membrane to be utilized for mass transfer when considering both microchannel and header regions. Mass transfer results provide evidence of a twofold to threefold increase in membrane utilization over other designs in the existing literature.

5.
Dalton Trans ; 42(3): 701-8, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23010738

RESUMO

In an effort to broaden the search for high-capacity hydrogen storage materials, three triborane compounds, NaB(3)H(8), NH(3)B(3)H(7), and NH(4)B(3)H(8), were studied. In addition to hydrogen, thermal decomposition also releases volatile boranes, and the relative amounts and species depend on the cations (Na(+), NH(4)(+)) and the Lewis base (NH(3)). Static-sample hydrogen NMR is used to probe molecular motion in the three solids. In each case, the line width decreases from low temperatures to room temperature in accordance with a model of isotropic or nearly isotropic reorientations. Such motions also explain a deep minimum in the relaxation time T(1). Translational diffusion never appears to be rapid on the 10(-5) s time scale of NMR.

6.
J Am Chem Soc ; 134(11): 5044-7, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22364186

RESUMO

Reducing the dimensionality of inorganic lattices allows for the creation of new materials that have unique optoelectronic properties. We demonstrate that a layered metal chalcogenide lattice, TiS(2), can form a dimensionally reduced crystalline one-dimensional hybrid organic/inorganic TiS(2)(ethylenediamine) framework when synthesized from molecular precursors in solution. This solid has strong absorption above 1.70 eV and pronounced emission in the near-IR regime. The energy dependence of the absorption, the near-IR photoluminescence, and electronic band structure calculations confirm that TiS(2)(ethylenediamine) has a direct band gap.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...