Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 221: 121601, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33076132

RESUMO

A simple, efficient matrix solid phase dispersive extraction (MSPD) method was optimised to analyse simultaneously polycyclic aromatic hydrocarbons (PAHs) and polychlorobiphenyls (PCBs) from sediments, and was compared to microwave-assisted extraction (MAE). New dispersing agents were tested to improve MSPD extraction. 3-chloropropyl-bonded silica particles, in addition to Florisil, increased significantly the polyaromatics desorption capacity. A compromise was found for eluting both families of compounds from sediments, using a small volume of hexane/acetone. Low procedural detection limits could be reached (0.06-0.22 ng g-1 and 0.3-1.1 ng g-1 for PAHs and PCBs, respectively). Mean total extraction recoveries were good for PAHs (>67%, depending on the sediment) and for PCBs (>89%), with good precision (6-9% and 4-10% inter-day precision for PAHs and PCBs, respectively). Higher recoveries for PCBs could be reached in comparison with formerly developed sonication or Soxhlet extraction methods, but also with MAE. MSPD offered significant decrease of sample amount, of solvent consumption and allowed more efficient cleaning of the sediment matrix, leading to less matrix effects compared to MAE, removing lots of interfering compounds without additional purification step. The robustness of the MSPD methodology could be demonstrated extracting quantitatively sediments from different sources and with various mineralogical characteristics.

2.
J Hazard Mater ; 384: 121499, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31685316

RESUMO

Organic matter (OM), clays, sand or time are factors possibly influencing the bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) and polychlorobiphenyls (PCBs) from sediments. An experimental design was performed to monitor and quantify this process. The bioaccessible fraction, linked to the rapidly-desorbing fraction (Frap) of contaminants, was assessed through a non-exhaustive extraction using a carboxymethyl-ß-cyclodextrin polymer. OM content was the most influential factor as regards Frap. Clay percentage was a slightly influential factor for PAHs while the interaction sand × OM was a slightly influential factor for PCBs. Frap was also determined in a sediment core collected from Martot's Pond (France). The higher the PAH/PCB concentration in this sediment, the higher the bioaccessible fraction. The relationship between a lower bioaccessibility and a higher number of PAHs cycles or PCB chlorines was linear. OM content impacted on Frap only for PAHs. Sequential extractions of some trace elements were also performed to evaluate their mobility. Cu, Cr, Pb, Ni were the less bioaccessible. A great part of As, Cd and Zn was found in the most bioaccessible sediment fractions. The 40-65 cm section might be considered as the most negatively impacting on the aquatic fauna, due to Cd and Zn high bioaccessible concentrations.


Assuntos
Sedimentos Geológicos/análise , Metais Pesados/análise , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Rios
3.
Chemosphere ; 228: 744-755, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31071561

RESUMO

Electrokinetic (EK) remediation is often developed for metal decontamination but shows limitations for polycyclic aromatic hydrocarbons (PAHs) and polychlorobiphenyls (PCBs) which are nonionic and involve low aqueous solubility. This paper reports many laboratory studies devoted to the investigations of EK efficiency on the mobility and the removal of metals, PAHs and PCBs from dredged sediments, using a mixture of chelating agent and surfactants. The results showed that increasing chelating agent concentration was favorable for both metal and PAH removal. Applying a periodic voltage gradient associated to a low concentration of additives provided the best removal of Zn, Cd and Pb and also the 16 priority PAHs. The tested fresh harbor sediment was highly resistant to metals and organics mobilization and transport because of an aged contamination, a high buffering capacity, a very low hydraulic permeability and a high organic matter content. However, experiments performed on a former sediment which was deposited many years ago provided better removal results, involving low organic matter and carbonates content. The efficiency of the EK process was also assessed by measuring the acute toxicity of the EK-treated sediment on the copepod Eurytemora affinis exposed to sediment elutriates.


Assuntos
Copépodes/efeitos dos fármacos , Recuperação e Remediação Ambiental/métodos , Sedimentos Geológicos/química , Poluentes Químicos da Água/toxicidade , Animais , Quelantes/química , Eletroquímica/métodos , França , Concentração de Íons de Hidrogênio , Metais/isolamento & purificação , Bifenilos Policlorados/isolamento & purificação , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Tensoativos/química , Testes de Toxicidade Aguda , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
4.
J Hazard Mater ; 359: 500-509, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30086520

RESUMO

The aim of this study was to understand the role of indigenous soil microbial communities on the biodegradation of polycyclic aromatic hydrocarbons (PAHs) and to determine whether PAHs degradation potential in soils may be evaluated by analysis of bacterial diversity and potential metabolisms using a metagenomics approach. Five different soils were artificially contaminated with seven selected PAHs and the most abundant bacterial taxa were assessed by sequencing the 16S rRNA gene, and linking them to PAH biodegradation efficiencies. A PICRUSt approach was then led to estimate the degradation potentials by metagenomics inference. Although the role of bacteria in PAHs degradation is not directly established here, the presence of a large number of bacteria belonging to the Betaproteobacteria class correlated to a higher degradation of LMW PAHs. A link with specific bacterial taxa was more difficult to establish concerning HMW PAHs, which seemed to require more complex mechanisms as shown by PICRUSt.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Microbiota , RNA Ribossômico 16S/genética
5.
Sci Total Environ ; 607-608: 944-953, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-28724226

RESUMO

Electrokinetic (EK) remediation can be a suitable technology for treating contaminated dredged harbor sediment, stored on terrestrial disposal sites. Citric acid (CA) and biosurfactants (rhamnolipids and saponin) were chosen as enhancing agents for simultaneous metal (Cd, Cr, Cu, Pb, Zn) and PAH/PCB removal by EK because of their potential low toxicity with a view to site restoration. Three EK runs were performed using a periodic voltage (1Vcm-1) and various concentrations of agents. The best combination of CA (0.2molL-1) and saponin (0.85gL-1) did not remove high amounts of metals (4.4-15.8%) and provided only slightly better results for PAH and PCB removal (29.2% and 38.2%, respectively). The harbor sediment was highly resistant to metal and organics mobilization and transport because of an aged contamination, a high buffering capacity, a very low hydraulic permeability and a high organic matter content. The efficiency of the EK process was also assessed by measuring the acute toxicity of the EK-treated sediment on E. affinis copepods exposed to sediment elutriates. Fortunately, the use of CA and biosurfactants did not significantly impact on sediment toxicity. Some treated sediment sections, particularly those near the anode compartment, were statistically more toxic than the raw sediment. More particularly, E. affinis copepods were significantly sensitive to low pH values and oxidative conditions, to Cu, and to a lesser extent to Pb amounts. The speciation of these metals probably changed in these pH and redox conditions so that they became more easily leachable and bioavailable. In contrast, toxicity was negatively correlated to PAH and PCB amounts after EK treatment, probably due to the production of oxidized metabolites of PAHs and PCBs.


Assuntos
Poluentes Ambientais/análise , Recuperação e Remediação Ambiental , Sedimentos Geológicos/análise , Metais Pesados/análise , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Animais , Bioensaio , Copépodes , Testes de Toxicidade Aguda
6.
Environ Pollut ; 225: 663-673, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28390702

RESUMO

This study focused on the role of bioaccessibility in the phenanthrene (PHE) biodegradation in diffusely contaminated soil, by combining chemical and microbiological approaches. First, we determined PHE dissipation rates and PHE sorption/desorption isotherms for two soils (PPY and Pv) presenting similar chronic PAH contamination, but different physico-chemical properties. Our results revealed that the PHE dissipation rate was significantly higher in the Pv soil compared to the PPY soil, while PHE sorption/desorption isotherms were similar. Interestingly, increases of PHE desorption and potentially of PHE bioaccessibility were observed for both soils when adding rhamnolipids (biosurfactants produced by Pseudomonas aeruginosa). Second, using 13C-PHE incubated in the same soils, we analyzed the PHE degrading bacterial communities. The combination of stable isotope probing (DNA-SIP) and 16S rRNA gene pyrosequencing revealed that Betaproteobacteria were the main PHE degraders in the Pv soil, while a higher bacterial diversity (Alpha-, Beta-, Gammaproteobacteria and Actinobacteria) was involved in PHE degradation in the PPY soil. The amendment of biosurfactants commonly used in biostimulation methods (i.e. rhamnolipids) to the two soils clearly modified the PHE sorption/desorption isotherms, but had no significant impact on PHE degradation rates and PHE-degraders identity. These results demonstrated that increasing the bioaccessibility of PHE has a low impact on its degradation and on the functional populations involved in this degradation.


Assuntos
Fenantrenos/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Betaproteobacteria/genética , Biodegradação Ambiental , Gammaproteobacteria , Glicolipídeos , Fenantrenos/química , RNA Ribossômico 16S , Solo/química
7.
Sci Total Environ ; 580: 482-490, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28024749

RESUMO

Large-scale outdoor mesocosms were designed and co-contaminated with metals (Cd, Pb, Zn) and organic compounds to better understand the complex functioning of urban roadside swale environments. Infiltration systems were planted with macrophytes (P. arundinaceae, J. effusus and I. pseudacorus) or grassed, and natural or spiked target metals were monitored over two years. In the non-spiked mesocosms, atmospheric metal inputs were slightly higher than outputs, leading to low metal accumulation in topsoils and to very low outflow water contamination (<0.7% of the initial metal stock). In the spiked infiltration systems that simulated point pollution through water inflow, transfer of the initial stock of metals to the deeper soil layers was quite low and outflow water contamination was very low (<0.6% of the initial stock). The main metal output from these systems occurred in the first days of their installation because of the high metal solubility in water and insufficient plant cover at that time. The infiltration systems stabilized after a few weeks, probably because of stronger sorption to soil aggregates, and because of plant root development. Mephytoextraction in plant roots was more efficient in mesocosms planted with P. arundinacea and grass. Metal phytoextraction in plant aerial parts was also better for grass and P. arundinacea, when considering metal standing stocks instead of their concentration in plants. J. effusus was a good metal accumulator, but its low aboveground biomass development was less favorable to metal removal through harvesting.

8.
J Hazard Mater ; 314: 220-229, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27136727

RESUMO

The total amount of polycyclic aromatic hydrocarbons (PAHs) in soils, given by exhaustive chemical extractions, does not relate directly to environmental risk, since only a fraction may be accessible to soil organisms. The rapid PAH desorbing fraction (Frap), which is weakly and reversibly sorbed to soils, is called the bioaccessible fraction, and can be estimated by non-exhaustive aqueous extractions. In order to better estimate Frap, different mild-extractants were tested, such as various cyclodextrins, surfactants and butanol. Their extractability performances were correlated to the Kd partition coefficients of seven PAHs obtained through sorption isotherms from five soils, but also to the PAHs molecular size and to the amounts of organic matter and of some clays (smectites and kaolinites). If hydroxypropyl-ß-cyclodextrin was actually a good extractant to assess PAH accessibility, the polymer of carboxymethyl-ß-cyclodextrin (pCMCD) was better (with a lower cost) to estimate the rapid mass transfer between soil particles and the soil solution, depending also on soil ageing. But Frap, estimated through pCMCD extractions, did not reflect the biodegradation of the PAHs after three months in soil microcosms. The chemical method underestimated the dissipation of 3-4 ring PAHs and overestimated that of 5-6 ring PAHs. So biodegradation was not only limited by PAHs mass-transfer, but also by biological factors, favoring the access of microorganisms to residual strongly sorbed fractions of 3-4 ring PAHs, and inhibiting the degradation of accessible but highly toxic 5-6 ring PAHs.


Assuntos
Biodegradação Ambiental , Hidrocarbonetos Policíclicos Aromáticos/química , Poluentes do Solo/química , beta-Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina , Microbiologia do Solo
9.
Sci Total Environ ; 520: 146-53, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25813967

RESUMO

Biofilters have been implemented in urban areas due to their ability to improve road runoff quality. However, little is known about the role of soil microorganisms and plants on pollutant remediation in planted swales. Therefore, four large-scale outdoor mesocosms were built and co-contaminated with metals and model polycyclic aromatic hydrocarbons (PAHs) (phenanthrene (Phen), pyrene (Pyr) and benzo[a]pyrene (BaP)), to better understand the complex functioning of swale-like environments. Three macrophyte plant species were tested for enhanced remediation of PAHs: Juncus effusus, Iris pseudacorus, Phalaris arundinacea and a grass mix. Long-term dynamics of PAHs in water outflow and soil was studied. Results showed that only 0.07 to 0.22% of total PAHs were released in water outflow after one year. Two years after contamination, soil sample analyses showed a dissipation of 99.6% for Phen and 99.4% for Pyr whatever the mesocosm considered and ranging from 75.5 to 91% for BaP, depending on plant species. Furthermore, dissipation time-courses may be described by a biphasic process. Experiments showed that the grass mix facilitated BaP long-term biodegradation. Grass appeared also to be the best filter for suspended solids because of its dense rhizosphere, which prevents the transfer of BaP to groundwater.


Assuntos
Ecossistema , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , Biodegradação Ambiental , Raízes de Plantas , Plantas , Solo , Microbiologia do Solo
10.
Chemosphere ; 125: 1-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25644703

RESUMO

Dredged harbor sediment co-contaminated by heavy metals and polycyclic aromatic hydrocarbons (PAHs) was subjected to enhanced electrokinetic treatments, using a mixture of a chelating agent (citric acid CA) and a surfactant as additives in the processing fluids. We tested various operating conditions (at 1 V cm(-1)): different CA concentrations, applying a periodic voltage gradient, pre-conditioning the sediment with the additives, and replacing the synthetic surfactant Tween 20 (TW20) by biosurfactants. Increasing the CA concentration was favorable for both metal and PAH removal. Applying a periodic voltage gradient associated to a low concentration of CA and TW20 provided the best results for Zn, Cd and Pb removal and also for removal of the 16 priority PAHs. Promising results were obtained with solutions containing rhamnolipids (0.028%) and a viscosin-like biosurfactant produced by Pseudomonas fluorescens Pfa7B (0.025%), associated to a periodic voltage gradient. Although the rhamnolipid and the viscosin-like compounds involved a higher electrical current than TW20, metals were less removed from the sediment. The electroosmotic flow was lower when we used biosurfactants, hence a less effective effect on PAH removal.


Assuntos
Quelantes/química , Eletricidade , Recuperação e Remediação Ambiental/métodos , Metais Pesados/química , Hidrocarbonetos Policíclicos Aromáticos/química , Tensoativos , Poluentes Químicos da Água/química , Sedimentos Geológicos/química , Polissorbatos/química , Pseudomonas fluorescens/metabolismo , Tensoativos/química
11.
Chemosphere ; 111: 1-6, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24997892

RESUMO

Recycling used railway sleepers is a major economic and environmental issue since nearly 50000 tons of those are incinerated every year in France. Therefore, it appeared essential to determine the real toxicity of sleepers and particularly for very old one. They are treated with creosote, which contains toxic and carcinogen compounds such as polycyclic aromatic hydrocarbons (PAHs). This study aims at measuring the amount of 16 priority PAHs and water extractable phenols in 12 sleepers implemented between 1936 and 1978. Results showed that the creosote content was systematically far above 1000mgkg(-1), even after 76years ageing. Crossties should then be considered as a hazardous waste according to European regulations. Less creosote and PAHs were detected in the sleepers centers. Moreover, the fraction of volatile PAHs was lower in the surface part, due to their evaporation. It appeared that a long ageing process was not sufficient to remove the major part of volatile PAHs and that they could be yet released in the atmospheric environment. Moreover, most of the treated crossties contained huge amount of the highly toxic benzo[a]pyrene, between 179mgkg(-1) and up to 853mgkg(-1) in wood. In contrast, the study revealed that concentrations of water extractable phenols were well below European regulations (3% by mass of creosote).


Assuntos
Fenóis/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Espectrofotometria Ultravioleta , Poluentes Químicos da Água/análise , Água/química , Benzo(a)pireno/análise , Cromatografia Gasosa , Creosoto/química , França , Resíduos Perigosos , Hidrocarbonetos Policíclicos Aromáticos/química , Reciclagem , Fatores de Tempo , Poluentes Químicos da Água/química
12.
Environ Sci Pollut Res Int ; 21(13): 8133-45, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24671402

RESUMO

The natural biodegradation of seven polycyclic aromatic hydrocarbons (PAHs) by native microorganisms was studied in five soils from Normandy (France) from diffusely polluted areas, which can also pose a problem in terms of surfaces and amounts of contaminated soils. Bioavailability tests using cyclodextrin-based extractions were performed. The natural degradation of low molecular weight (LMW) PAHs was not strongly correlated to their bioavailability due to their sorption to geosorbents. Conversely, the very low degradation of high molecular weight (HMW) PAHs was partly correlated to their poor availability, due to their sorption on complexes of organic matter and kaolinites or smectites. A principal component analysis allowed us to distinguish between the respective degradation behaviors of LMW and HMW PAHs. LMW PAHs were degraded in less than 2-3 months and were strongly influenced by the relative percentage of phenanthrene-degrading bacteria over total bacteria in soils. HMW PAHs were not significantly degraded, not only because they were less bioavailable but also because of a lack of degrading microorganisms. Benzo[a]pyrene stood apart since it was partly degraded in acidic soils, probably because of a catabolic cooperation between bacteria and fungi.


Assuntos
Bactérias/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Solo/química , Biodegradação Ambiental , Disponibilidade Biológica , Ciclodextrinas , França , Fungos/metabolismo , Análise de Componente Principal , Especificidade da Espécie , Fatores de Tempo
13.
J Hazard Mater ; 261: 593-601, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23995556

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) can be preponderant in contaminated sediments and understanding how they are sorbed in the different mineral and organic fractions of the sediment is critical for effective removal strategies. For this purpose, a mixture of seven PAHs was studied at the sediment/water interface and sorption isotherms were obtained. The influence of various factors on the sorption behavior of PAHs was evaluated, such as the nature of minerals, pH, ionic strength and amount of organic matter. Afterwards, the release of PAHs from the sediment by surfactants was investigated. The effectiveness of sodium dodecyl sulfate (SDS) was compared to natural biosurfactants, of cyclolipopeptidic type (amphisin and viscosin-like mixture), produced by two Pseudomonas fluorescens strains. The desorption of PAHs (from naphthalene to pyrene), from the highly retentive kaolinite fraction, could be favored by adding SDS or amphisin, but viscosin-like biosurfactants were only effective for 2-3 ring PAHs desorption (naphthalene to phenanthrene). Moreover, while SDS favors the release of all the target PAHs from a model sediment containing organic matter, the two biosurfactants tested were only effective to desorb the lowest molecular weight PAHs (naphthalene to fluorene).


Assuntos
Lipopeptídeos/química , Peptídeos Cíclicos/química , Hidrocarbonetos Policíclicos Aromáticos/química , Tensoativos/química , Poluentes Químicos da Água/química , Adsorção , Recuperação e Remediação Ambiental/métodos , Sedimentos Geológicos/química , Lipopeptídeos/metabolismo , Peptídeos Cíclicos/metabolismo , Pseudomonas fluorescens/metabolismo , Tensoativos/metabolismo
14.
J Chromatogr A ; 1218(7): 981-9, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21227441

RESUMO

A new sampling method was developed to collect vapor-phase polycyclic aromatic compounds (PAHs) downstream of a diesel engine equipped with a diesel particulate filter (DPF). This configuration allowed us to collect separately the particulate phase, which was trapped inside the DPF, and the vapor phase, which was sampled downstream of the DPF. PAHs, which were not predominantly absorbed into the poor organic fraction of the diesel soot, but were rather physically sorbed on high energetic adsorption sites, should be extracted using very drastic extraction conditions Microwave-assisted extraction using solvent mixtures composed of pyridine and diethylamine were used to desorb particulate PAHs, and the total PAH amounts corresponded to a very low value, i.e., 8 µg g⁻¹ or 0.24 µg km⁻¹, with a predominance of low weight PAHs. For collection of the vapor phase, gas bubbling in an aqueous medium was preferred to conventional methods, e.g., trapping on solid sorbents, for several reasons: aqueous trapping allowed us to use a solid phase enrichment process (SPE) that permitted PAH sampling at the sub-picogram levels. Consequently, low volume sampling was possible even if the sampling duration was very short (20 min). Additionally, the amount of time saved for the analysis was considerable when coupling SPE to the analytical system (liquid chromatography with fluorimetric detection). Solvent consumption for the overall sampling and analytical processes was also drastically reduced. Experiments on a diesel engine showed that vapor phase samples collected downstream of the DPF contained all of the 15 target priority PAHs, even the heaviest ones. The total vapor-phase PAH amount was 6.88 µg N m⁻³ or 10.02 µg km⁻¹, which showed that the gaseous fraction contains more PAHs than the particulate fraction. Partitioning coefficients (K(p)) were estimated showing the predominance in the vapor phase of all the PAHs. However, the DPF technology effects a considerable decrease in the total PAH emission when compared to non-equipped diesel vehicles.


Assuntos
Gases/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas , Micro-Ondas , Sensibilidade e Especificidade , Extração em Fase Sólida , Fuligem
15.
Talanta ; 82(1): 227-36, 2010 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-20685461

RESUMO

Several methods of extraction were optimized to extract polycyclic aromatic hydrocarbons (PAHs), their nitrated derivatives and heavy n-alkanes from a highly adsorptive particulate matter resulting from the combustion of diesel fuel in a diesel engine. This particular carbonaceous particulate matter, collected at high temperatures in cordierite diesel particulate filters (DPF), which are optimized for removing diesel particles from diesel engine exhaust emissions, appeared extremely refractory to extractions using the classical extracting conditions for these pollutants. In particular, the method of accelerated solvent extraction (ASE) is described in detail here. Optimization was performed through experimental design to understand the impact of each factor studied and the factors' possible interactions on the recovery yields. The conventional extraction technique, i.e., Soxhlet extraction, was also carried out, but the lack of quantitative extractions led us to use a more effective approach: hot Soxhlet. It appeared that the extraction of the heaviest PAHs and nitroPAHs by either the optimized ASE or hot Soxhlet processes was far from complete. To enhance recovery yields, we tested original solvent mixtures of aromatic and heteroaromatic solvents. Thereafter, these two extraction techniques were compared to microwave-assisted extraction (MAE) and supercritical fluid extraction (SFE). In every case, the only solvent mixture that permitted quantitative extraction of the heaviest PAHs from the diesel soot was composed of pyridine and diethylamine, which has a strong electron-donor character. Conversely, the extraction of the nitrated PAHs was significantly improved by the use of an electron-acceptor solvent or by introducing a small amount of acetic acid into the pyridine. It was demonstrated that, for many desirable features, no single extraction technique stound out as the best: ASE, MAE or SFE could all challenge hot Soxhlet for favourable extractions. Consequently, the four optimized extraction techniques were performed to extract the naturally polluted diesel soot collected inside the DPF. Comparisons with the NIST standard reference material SRM 1650b showed that the soot collected from the DPF contained 50% fewer n-alkanes, and also markedly lower levels of PAHs (44 less concentrated) than SRM 1650b, and that the ratio of nitroPAHs to PAHs was increased. These results were attributed to the high temperatures reached inside the particulate filter during sampling runs and to the contribution of the catalytic DPF to aromatic and aliphatic hydrocarbons abatement.

16.
Anal Chim Acta ; 651(1): 48-56, 2009 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-19733734

RESUMO

Supercritical fluid extraction (SFE) was performed to extract complex mixtures of polycyclic aromatic hydrocarbons (PAHs), nitrated derivatives (nitroPAHs) and heavy n-alkanes from spiked soot particulates that resulted from the incomplete combustion of diesel oils. This polluted material, resulting from combustion in a light diesel engine and collected at high temperature inside the particulate filter placed just after the engine, was particularly resistant to conventional extraction techniques, such as soxhlet extraction, and had an extraction behaviour that differed markedly from certified reference materials (SRM 1650). A factorial experimental design was performed, simultaneously modelling the influence of four SFE experimental factors on the recovery yields, i.e.: the temperature and the pressure of the supercritical fluid, the nature and the percentage of the organic modifier added to CO(2) (chloroform, tetrahydrofuran, methylene chloride), as a means to reach the optimal extraction yields for all the studied target pollutants. The results of modelling showed that the supercritical fluid pressure had to be kept at its maximum level (30 MPa) and the temperature had to be kept relatively low (75 degrees C). Under these operating conditions, adding 15% of methylene chloride to the CO(2) permitted quantitative extraction of not only light PAHs and their nitrated derivatives, but also heavy n-alkanes from the spiked soots. However, heavy polyaromatics were not quantitatively extracted from the refractory carbonaceous solid surface. As such, original organic modifiers were tested, including pyridine, which, as a strong electron donor cosolvent (15% into CO(2)), was the most successful. The addition of diethylamine to pyridine, which enhanced the electron donor character of the cosolvent, even increased the extraction yields of the heaviest PAHs, leading to a quantitative extraction of all PAHs (more than 79%) from the diesel particulate matter, with detection limits ranging from 0.5 to 7.8 ng for 100 mg of spiked material. Concerning the nitrated PAHs, a small addition of acetic acid into pyridine, as cosolvents, gave the best results, leading to fair extraction yields (approximately 60%), with detection limits ranging from 18 to 420 ng.


Assuntos
Poluentes Atmosféricos/análise , Cromatografia com Fluido Supercrítico/métodos , Gasolina/análise , Nitratos/química , Material Particulado/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Ácido Acético/química , Poluentes Atmosféricos/química , Poluentes Atmosféricos/isolamento & purificação , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Piridinas/química , Fuligem/química
17.
Anal Bioanal Chem ; 390(1): 389-98, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17985121

RESUMO

Pressurised microwave-assisted extraction was used to extract a complex mixture containing polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs and heavy n-alkanes from a particularly refractory carbonaceous material resulting from the combustion in a diesel engine. A second-order central composite design was used to determine the optimal conditions of extraction in terms of time, temperature, volume and nature of extracting solvent from spiked diesel soots. To begin, methylene chloride, tetrahydrofuran and chloroform were tested for extracting the spiked diesel particulates; however, the nature of these solvents was not really an influential factor. Volume was the most influential factor and was kept at a medium level to enhance the extraction of heavy PAHs without introducing an important dilution factor. Temperature and time were not influential as main factors but interacted with the other factors. Finally, high temperature and duration associated with a medium volume of methylene chloride were better for the extractions. After this optimisation, five-ring and six-ring PAHs were nevertheless not satisfactorily desorbed. Other solvents were therefore tested. Only aromatic ones, and particularly heterocyclic aromatic solvents, managed to desorb the heaviest PAHs. Pyridine, with its both aromatic and its basic character, was the most successful solvent. Desorption was even complete with an addition of 17% of diethylamine into pyridine. So, using MAE, we succeeded in extracting quantitatively, from the spiked refractory diesel soot surface, two-ring to six-ring PAHs, heavy n-alkanes and short nitrated PAHs. However, heavy nitrated PAHs were better extracted with a small addition of acetic acid (1%) into pyridine instead of a basic cosolvent.

18.
Talanta ; 71(5): 1825-33, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-19071529

RESUMO

In the context of a European project, a new approach of sampling of volatile polycyclic aromatic hydrocarbons (PAHs) from air was developed. In fact, the aim of this project was to test the efficiency of an air cleansing prototype reactor, which was operating by non-thermal plasmolysis. With an eye to model the atmosphere ejected by the prototype, we needed to vaporise the volatile PAHs in an air stream at concentrations as low as those recommended by European Directives (96/62/CE) for PAHs in ambient air (i.e. 1ng m(-3)). Our strategy was based on the analysis of PAHs trapped in an aqueous medium, in order to avoid important losses of volatile compounds observed during the delicate desorption-concentration step when classical solid supports are used. Then a study was carried out to determine: the design of the collecting part, the flow-rate of the air sampling, the nature and concentration of chemical additives used to enhance PAH solubility in water. The very highly diluted aqueous media obtained after the bubbling step were concentrated by solid-phase extraction (SPE) on hydrophobic cartridges and analysed on-line by reversed-phase HPLC with UV and fluorimetric detections. Lastly, the sampling technique was directly applied to the outlet of the air cleansing prototype and the analysis after 3-6h of non-thermal plasmolysis showed that the target volatile PAHs were not present in an air stream initially polluted by volatile organic compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...