Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 13(5)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34066921

RESUMO

Continuous twin screw wet granulation is one of the key continuous manufacturing technologies that have gained significant interest in the pharmaceutical industry as well as in academia over the last ten years. Given its considerable advantages compared to wet granulation techniques operated in batch mode such as high shear granulation and fluid bed granulation, several equipment manufacturers have designed their own manufacturing setup. This has led to a steep increase in the research output in this field. However, most studies still focused on a single (often placebo) formulation, hence making it difficult to assess the general validity of the obtained results. Therefore, current review provides an overview of recent progress in the field of continuous twin screw wet granulation, with special focus on the importance of the formulation aspect and raw material properties. It gives practical guidance for novel and more experienced users of this technique and highlights some of the unmet needs that require further research.

2.
Int J Pharm X ; 3: 100077, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33870182

RESUMO

Despite significant advances in the research domain of continuous twin screw granulation, limited information is currently available on the impact of raw material properties, especially considering batch-to-batch variability. The importance of raw material variability and subsequent mitigation of the impact of this variability on the manufacturing process and drug product was recently stressed in the Draft Guidance for Industry on Quality Considerations for Continuous Manufacturing by the U.S. Food and Drug Administration (FDA). Therefore, this study assessed the impact of microcrystalline cellulose (MCC) batch-to-batch variability and process settings in a continuous twin screw wet granulation and semi-continuous drying line. Based on extensive raw material characterization and subsequent principal component analysis, raw material variability was quantitatively introduced in the design of experiments approach by means of t1 and t2 scores. L/S ratio had a larger effect on critical granule attributes and processability than screw speed and drying time. A large impact of the t1 and t2 scores was found, indicating the importance of raw material attributes. For the studied formulation, it was concluded that MCC batches with a low water binding capacity, low moisture content and high bulk density generated granules with the most desirable quality attributes. Additionally, an innovative and quantitative approach towards mitigating batch-to-batch variability of raw materials was proposed, which is also applicable for additional excipients and APIs.

3.
Pharmaceutics ; 13(2)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672389

RESUMO

The drying unit of a continuous from-powder-to-tablet manufacturing line based on twin-screw granulation (TSG) is a crucial intermediate process step to achieve the desired tablet quality. Understanding the size reduction of pharmaceutical granules before, during, and after the fluid bed drying process is, however, still lacking. A first major goal was to investigate the breakage and attrition phenomena during transport of wet and dry granules, the filling phase, and drying phase on a ConsiGma-25 system (C25). Pneumatic transport of the wet granules after TSG towards the dryer induced extensive breakage, whereas the turbulent filling and drying phase of the drying cells caused rather moderate breakage and attrition. Subsequently, the dry transfer line was responsible for additional extensive breakage and attrition. The second major goal was to compare the influence of drying air temperature and drying time on granule size and moisture content for granules processed with a commercial-scale ConsiGma-25 system and with the R&D-scale ConsiGma-1 (C1) system. Generally, the granule quality obtained after drying with C1 was not predictive for the C25, making it challenging during process development with the C1 to obtain representative granules for the C25.

4.
Pharmaceutics ; 13(2)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546383

RESUMO

The suitability of pharmaceutical binders for continuous twin-screw wet granulation was investigated as the pharmaceutical industry is undergoing a switch from batch to continuous manufacturing. Binder selection for twin-screw wet granulation should rely on a scientific approach to enable efficient formulation development. Therefore, the current study identified binder attributes affecting the binder effectiveness in a wet granulation process of a highly soluble model excipient (mannitol). For this formulation, higher binder effectiveness was linked to fast activation of the binder properties (i.e., fast binder dissolution kinetics combined with low viscosity attributes and good wetting properties by the binder). As the impact of binder attributes on the granulation process of a poorly soluble formulation (dicalcium phosphate) was previously investigated, this enabled a comprehensive comparison between both formulations in current research focusing on binder selection. This comparison revealed that binder attributes that are important to guide binder selection differ in function of the solubility of the formulation. The identification of critical binder attributes in the current study enables rational and efficient binder selection for twin-screw granulation of well soluble and poorly soluble formulations. Binder addition proved especially valuable for a poorly soluble formulation.

5.
Int J Pharm ; 588: 119756, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32783981

RESUMO

In recent years, significant progress has been made in the field of continuous twin screw granulation. However, only limited knowledge is currently available on the impact of active pharmaceutical ingredient (API) properties on granule quality and processability. In this study, the response behavior of four formulations containing APIs (5-10% drug load) with diverse characteristics was compared to the behavior of the corresponding placebo formulation consisting of lactose, microcrystalline cellulose (MCC) and hydroxypropylmethylcellulose (HPMC). API selection was based on extensive material characterization, combining conventional testing with in silico descriptors. For each formulation, a design of experiments was set up, evaluating the impact of liquid to solid (L/S) ratio and screw speed. Response ranges, response behavior and processability of each of the four formulations proved very similar to the placebo formulation when an appropriate center point L/S ratio was chosen. Hence, this robust placebo formulation could prove useful by decreasing drug product development time and consequently providing patients with a faster access to innovative medicine. Additionally, APIs with similar properties exhibited highly comparable response behavior at similar L/S ratios, indicating the potential use of surrogate APIs in novel drug product development.


Assuntos
Celulose , Lactose , Composição de Medicamentos , Humanos , Derivados da Hipromelose , Tamanho da Partícula , Tecnologia Farmacêutica
6.
Int J Pharm ; 577: 119068, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31981703

RESUMO

Despite the recent commercialization of several drug products manufactured through continuous manufacturing techniques, knowledge on the formulation aspect of these techniques, such as twin screw wet granulation, is still rather limited. Previous research identified lactose/MCC/HPMC as a robust platform formulation for several model formulations, although granulation of the high-dosed, poorly soluble API mebendazole proved challenging. Therefore, current research evaluated the binder addition method (wet or dry) as well as surfactant (SLS) addition when using PVP, instead of HPMC. Compared to the previous formulation, using HPMC as binder, all four formulations with PVP yielded significantly stronger granules at similar to significantly lower liquid to solid (L/S) ratios. Through the combination of four replicate center composite circumscribed designs, each evaluating the impact of screw speed and L/S ratio on granule quality attributes, the effect of the formulation variables was assessed. Overall, L/S ratio had the most significant impact on granule characteristics whereas the effect of screw speed was negligible. Similar granule quality attributes were obtained for each formulation, although the addition of SLS and wet binder addition significantly reduced the required L/S ratio to achieve the desired characteristics. This significant reduction could prove useful for processing other formulations requiring high amounts of moisture, which could otherwise not be dried at a high throughput due to the limited drying capacity of the dryer unit of the Consigma system.


Assuntos
Excipientes/química , Mebendazol/administração & dosagem , Tensoativos/química , Tecnologia Farmacêutica , Derivados da Hipromelose/química , Mebendazol/química , Povidona/química , Solubilidade
7.
Int J Pharm ; 576: 118981, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31935472

RESUMO

In recent years, continuous manufacturing techniques, such as twin screw wet granulation, have gained significant momentum. Due to the large diversity of the (model) formulations and equipment, it is often difficult to generalize conclusions about the importance of process settings. As only limited knowledge is available on the importance of formulation variables, this study focused on the systematic quantification of both process as formulation effects on critical quality attributes of granules from several model formulations. Apart from conventional process and formulation variables, also non-conventional process factors such as nozzle diameter, nozzle orientation and inclusion of a new type of size control elements were evaluated using a Plackett-Burman screening design. Although effects were often formulation-dependent, liquid-to-solid ratio proved the most influential variable for all formulations. Furthermore, binder concentration had a clear effect on granule characteristics, whereas barrel fill level and barrel temperature were less influential. The novel type of size control elements improved granule size distribution and density. The impact of nozzle diameter and wet binder addition proved negligible towards granule properties. Overall it was apparent that lactose/MCC-based formulations correlated better than lactose-based formulations, indicating the possible process robustness of the first filler combination to accommodate API and excipient variability and to handle APIs with different characteristics.


Assuntos
Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Parafusos Ósseos , Excipientes/química , Lactose/química , Tamanho da Partícula , Solubilidade , Comprimidos/química , Temperatura , Resistência à Tração
8.
Int J Pharm ; 576: 119004, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31935475

RESUMO

Due to the numerous advantages over batch manufacturing, continuous manufacturing techniques such as twin screw wet granulation are rapidly gaining importance in pharmaceutical production. Since a large knowledge gap on the importance of formulation variables exists, this study systematically assessed the impact of different screw configurations and process settings on eight model formulations, varying in filler type, active pharmaceutical ingredient (API) characteristics and drug load. Although liquid to solid (L/S) ratio was the most influential variable for all formulations, also a large effect of the kneading element thickness was observed. Narrow kneading elements with a length to diameter ratio (L/D) of 1/6 had a significant detrimental effect on granule size, flow and strength compared to 1/4 L/D elements. The effects of kneading element distribution and barrel fill level were less pronounced. At low drug load, both filler types could be used to obtain granules with acceptable critical quality attributes (CQAs) for both APIs. Granulation at high drug load of the poorly soluble, poorly wettable API mebendazole proved challenging as it could not be processed using lactose as filler, in contrast to lactose/MCC. As formulations containing lactose/MCC as filler were less influenced by different screw configurations, process settings and API characteristics than formulations without MCC, lactose/MCC/HPMC was considered a promising platform formulation.


Assuntos
Mebendazol/química , Metformina/química , Tecnologia Farmacêutica/métodos , Celulose/química , Composição de Medicamentos , Excipientes/química , Lactose/química , Tamanho da Partícula , Solubilidade , Molhabilidade
9.
Int J Pharm ; 571: 118760, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31622742

RESUMO

The use of native starch as in situ binder in a continuous twin screw wet granulation process was studied. Gelatinization of pea starch occurred in the barrel of the granulator using a poorly soluble excipient (anhydrous dicalcium phosphate), but the degree of gelatinization depended on the liquid-to-solid ratio, the granule heating and the screw configuration. Furthermore, the degree of starch gelatinization was correlated with the granule quality: higher binder efficiency was observed in runs where starch was more gelatinized. SEM and PLOM images showed experimental runs which resulted in completely gelatinized starch. Other starch types (maize, potato and wheat starch) could also be gelatinized when processed above a critical barrel temperature for gelatinization. This barrel temperature was different for all starches. In situ starch gelatinization was also investigated in combination with a highly soluble excipient (mannitol). The lower granule friability observed using pure mannitol compared to a mannitol/starch mixture indicated that starch did not contribute to the binding, hence starch did not gelatinize during processing. The study showed that native starch can be considered as a promising in situ binder for continuous twin screw wet granulation of a poorly soluble formulation.


Assuntos
Veículos Farmacêuticos/química , Amido/química , Química Farmacêutica , Composição de Medicamentos/instrumentação , Gelatina/química , Manitol/química , Tamanho da Partícula , Pisum sativum/química , Solanum tuberosum/química , Solubilidade , Comprimidos , Temperatura , Triticum/química , Zea mays/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...