Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38573520

RESUMO

Visual systems adapt to different light environments through several avenues including optical changes to the eye and neurological changes in how light signals are processed and interpreted. Spectral sensitivity can evolve via changes to visual pigments housed in the retinal photoreceptors through gene duplication and loss, differential and coexpression, and sequence evolution. Frogs provide an excellent, yet understudied, system for visual evolution research due to their diversity of ecologies (including biphasic aquatic-terrestrial life cycles) that we hypothesize imposed different selective pressures leading to adaptive evolution of the visual system, notably the opsins that encode the protein component of the visual pigments responsible for the first step in visual perception. Here, we analyze the diversity and evolution of visual opsin genes from 93 new eye transcriptomes plus published data for a combined dataset spanning 122 frog species and 34 families. We find that most species express the four visual opsins previously identified in frogs but show evidence for gene loss in two lineages. Further, we present evidence of positive selection in three opsins and shifts in selective pressures associated with differences in habitat and life history, but not activity pattern. We identify substantial novel variation in the visual opsins and, using microspectrophotometry, find highly variable spectral sensitivities, expanding known ranges for all frog visual pigments. Mutations at spectral-tuning sites only partially account for this variation, suggesting that frogs have used tuning pathways that are unique among vertebrates. These results support the hypothesis of adaptive evolution in photoreceptor physiology across the frog tree of life in response to varying environmental and ecological factors and further our growing understanding of vertebrate visual evolution.


Assuntos
Opsinas , Pigmentos da Retina , Humanos , Animais , Opsinas/genética , Anuros/genética , Duplicação Gênica , Microespectrofotometria
2.
Mol Phylogenet Evol ; 188: 107907, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37633542

RESUMO

Large-scale, time-calibrated phylogenies from supermatrix studies have become crucial for evolutionary and ecological studies in many groups of organisms. However, in frogs (anuran amphibians), there is a serious problem with existing supermatrix estimates. Specifically, these trees are based on a limited number of loci (15 or fewer), and the higher-level relationships estimated are discordant with recent phylogenomic estimates based on much larger numbers of loci. Here, we attempted to rectify this problem by generating an expanded supermatrix and combining this with data from phylogenomic studies. To assist in aligning ribosomal sequences for this supermatrix, we developed a new program (TaxonomyAlign) to help perform taxonomy-guided alignments. The new combined matrix contained 5,242 anuran species with data from 307 markers, but with 95% missing data overall. This dataset represented a 71% increase in species sampled relative to the previous largest supermatrix analysis of anurans (adding 2,175 species). Maximum-likelihood analyses generated a tree in which higher-level relationships (and estimated clade ages) were generally concordant with those from phylogenomic analyses but were more discordant with the previous largest supermatrix analysis. We found few obvious problems arising from the extensive missing data in most species. We also generated a set of 100 time-calibrated trees for use in comparative analyses. Overall, we provide an improved estimate of anuran phylogeny based on the largest number of combined taxa and markers to date. More broadly, we demonstrate the potential to combine phylogenomic and supermatrix analyses in other groups of organisms.


Assuntos
Anuros , Evolução Biológica , Animais , Filogenia , Anuros/genética , Ribossomos
3.
Mol Biol Evol ; 40(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37140129

RESUMO

The data available for reconstructing molecular phylogenies have become wildly disparate. Phylogenomic studies can generate data for thousands of genetic markers for dozens of species, but for hundreds of other taxa, data may be available from only a few genes. Can these two types of data be integrated to combine the advantages of both, addressing the relationships of hundreds of species with thousands of genes? Here, we show that this is possible, using data from frogs. We generated a phylogenomic data set for 138 ingroup species and 3,784 nuclear markers (ultraconserved elements [UCEs]), including new UCE data from 70 species. We also assembled a supermatrix data set, including data from 97% of frog genera (441 total), with 1-307 genes per taxon. We then produced a combined phylogenomic-supermatrix data set (a "gigamatrix") containing 441 ingroup taxa and 4,091 markers but with 86% missing data overall. Likelihood analysis of the gigamatrix yielded a generally well-supported tree among families, largely consistent with trees from the phylogenomic data alone. All terminal taxa were placed in the expected families, even though 42.5% of these taxa each had >99.5% missing data and 70.2% had >90% missing data. Our results show that missing data need not be an impediment to successfully combining very large phylogenomic and supermatrix data sets, and they open the door to new studies that simultaneously maximize sampling of genes and taxa.


Assuntos
Anuros , Animais , Filogenia , Análise de Sequência de DNA , Anuros/genética , Probabilidade
4.
Nat Commun ; 14(1): 3090, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248219

RESUMO

Long-read HiFi genome sequencing allows for accurate detection and direct phasing of single nucleotide variants, indels, and structural variants. Recent algorithmic development enables simultaneous detection of CpG methylation for analysis of regulatory element activity directly in HiFi reads. We present a comprehensive haplotype resolved 5-base HiFi genome sequencing dataset from a rare disease cohort of 276 samples in 152 families to identify rare (~0.5%) hypermethylation events. We find that 80% of these events are allele-specific and predicted to cause loss of regulatory element activity. We demonstrate heritability of extreme hypermethylation including rare cis variants associated with short (~200 bp) and large hypermethylation events (>1 kb), respectively. We identify repeat expansions in proximal promoters predicting allelic gene silencing via hypermethylation and demonstrate allelic transcriptional events downstream. On average 30-40 rare hypermethylation tiles overlap rare disease genes per patient, providing indications for variation prioritization including a previously undiagnosed pathogenic allele in DIP2B causing global developmental delay. We propose that use of HiFi genome sequencing in unsolved rare disease cases will allow detection of unconventional diseases alleles due to loss of regulatory element activity.


Assuntos
Metilação de DNA , Doenças Raras , Humanos , Haplótipos , Doenças Raras/genética , Metilação de DNA/genética , Análise de Sequência de DNA , Sequência de Bases , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas do Tecido Nervoso/genética
5.
Nat Genet ; 55(2): 301-311, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36658436

RESUMO

Ixodes spp. and related ticks transmit prevalent infections, although knowledge of their biology and development of anti-tick measures have been hindered by the lack of a high-quality genome. In the present study, we present the assembly of a 2.23-Gb Ixodes scapularis genome by sequencing two haplotypes within one individual, complemented by chromosome-level scaffolding and full-length RNA isoform sequencing, yielding a fully reannotated genome featuring thousands of new protein-coding genes and various RNA species. Analyses of the repetitive DNA identified transposable elements, whereas the examination of tick-associated bacterial sequences yielded an improved Rickettsia buchneri genome. We demonstrate how the Ixodes genome advances tick science by contributing to new annotations, gene models and epigenetic functions, expansion of gene families, development of in-depth proteome catalogs and deciphering of genetic variations in wild ticks. Overall, we report critical genetic resources and biological insights impacting our understanding of tick biology and future interventions against tick-transmitted infections.


Assuntos
Ixodes , Animais , Ixodes/genética , Ixodes/microbiologia , Genoma/genética , Bactérias/genética , Sequência de Bases , RNA
6.
BMC Bioinformatics ; 23(1): 541, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513983

RESUMO

BACKGROUND: Long-read shotgun metagenomic sequencing is gaining in popularity and offers many advantages over short-read sequencing. The higher information content in long reads is useful for a variety of metagenomics analyses, including taxonomic classification and profiling. The development of long-read specific tools for taxonomic classification is accelerating, yet there is a lack of information regarding their relative performance. Here, we perform a critical benchmarking study using 11 methods, including five methods designed specifically for long reads. We applied these tools to several mock community datasets generated using Pacific Biosciences (PacBio) HiFi or Oxford Nanopore Technology sequencing, and evaluated their performance based on read utilization, detection metrics, and relative abundance estimates. RESULTS: Our results show that long-read classifiers generally performed best. Several short-read classification and profiling methods produced many false positives (particularly at lower abundances), required heavy filtering to achieve acceptable precision (at the cost of reduced recall), and produced inaccurate abundance estimates. By contrast, two long-read methods (BugSeq, MEGAN-LR & DIAMOND) and one generalized method (sourmash) displayed high precision and recall without any filtering required. Furthermore, in the PacBio HiFi datasets these methods detected all species down to the 0.1% abundance level with high precision. Some long-read methods, such as MetaMaps and MMseqs2, required moderate filtering to reduce false positives to resemble the precision and recall of the top-performing methods. We found read quality affected performance for methods relying on protein prediction or exact k-mer matching, and these methods performed better with PacBio HiFi datasets. We also found that long-read datasets with a large proportion of shorter reads (< 2 kb length) resulted in lower precision and worse abundance estimates, relative to length-filtered datasets. Finally, for classification methods, we found that the long-read datasets produced significantly better results than short-read datasets, demonstrating clear advantages for long-read metagenomic sequencing. CONCLUSIONS: Our critical assessment of available methods provides best-practice recommendations for current research using long reads and establishes a baseline for future benchmarking studies.


Assuntos
Metagenoma , Metagenômica , Metagenômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Benchmarking , Análise de Sequência de DNA/métodos
7.
Zootaxa ; 5174(3): 201-232, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36095401

RESUMO

The geographically widespread species Afrixalus laevis (Anura: Hyperoliidae) currently has a disjunct distribution in western Central Africa (Cameroon, Equatorial Guinea, Gabon, and possibly adjacent countries) and the area in and near the Albertine Rift in eastern Democratic Republic of the Congo and neighboring countries. At least two herpetologists have previously suggested that these disjunct populations represent distinct species, and herein, we utilize an integrative taxonomic approach with molecular and morphological data to reconcile the taxonomy of these spiny reed frogs. We sequenced 1554 base pairs of the 16S and RAG1 genes from 34 samples of A. laevis and one sample of A. orophilus (sympatric with eastern populations of A. laevis), and combined these data with previously sequenced GenBank Afrixalus samples via the bioinformatics toolkit SuperCRUNCH. Phylogenetic trees, dated phylogenetic analyses, and species-delimitation analyses were generated with RAxML, BEAST, and BPP, respectively. Eleven mensural characters were taken from multiple specimens of A. laevis and A. orophilus, and compared with paired t-tests and analyses of covariance. These combined results suggested populations of A. laevis in western Central Africa (Cameroon and Bioko Island, Equatorial Guinea) represent one species, whereas populations from the Albertine Rift and nearby forests represent two undescribed taxa that are sister to A. dorsimaculatus. The two new species (A. lacustris sp. nov. and A. phantasma sp. nov.) are distinguished by our phylogenetic and species-delimitation analyses, significant differences in several mensural characters, qualitative morphological differences, and by their non-overlapping elevational distribution.


Assuntos
Anuros , Florestas , Animais , Filogenia
8.
Mol Ecol ; 31(18): 4884-4899, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35866574

RESUMO

As species arise, evolve and diverge, they are shaped by forces that unfold across short and long timescales and at both local and vast geographical scales. It is rare, however, to be able document this history across broad sweeps of time and space in a single species. Here, we report the results of a continental-scale phylogenomic analysis across the entire range of a widespread species. We analysed sequences of 1402 orthologous ultraconserved element (UCE) loci from 75 individuals to identify population genetic structure and historical demographic patterns across the continent-wide range of a cold-adapted ant, the winter ant, Prenolepis imparis. We recovered five well-supported, genetically isolated clades representing lineages that diverged from 8.2-2.2 million years ago. These include: (i) an early diverging lineage located in Florida, (ii) a lineage that spans the southern United States, (iii) populations that extend across the midwestern and northeastern United States, (iv) populations from the western United States and (v) populations in southwestern Arizona and Mexico. Population genetic analyses revealed little or no gene flow among these lineages, but patterns consistent with more recent gene flow among populations within lineages, and localized structure with migration in the western United States. High support for five major geographical lineages and lack of evidence of contemporary gene flow indicate in situ diversification across the species' range, producing relatively ancient lineages that persisted through subsequent climate change and glaciation during the Quaternary.


Assuntos
Formigas , Animais , Formigas/genética , DNA Mitocondrial/genética , Fluxo Gênico , Variação Genética/genética , Genética Populacional , Humanos , Filogenia , Filogeografia
9.
Microb Genom ; 8(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35302439

RESUMO

A long-standing challenge in human microbiome research is achieving the taxonomic and functional resolution needed to generate testable hypotheses about the gut microbiota's impact on health and disease. With a growing number of live microbial interventions in clinical development, this challenge is renewed by a need to understand the pharmacokinetics and pharmacodynamics of therapeutic candidates. While short-read sequencing of the bacterial 16S rRNA gene has been the standard for microbiota profiling, recent improvements in the fidelity of long-read sequencing underscores the need for a re-evaluation of the value of distinct microbiome-sequencing approaches. We leveraged samples from participants enrolled in a phase 1b clinical trial of a novel live biotherapeutic product to perform a comparative analysis of short-read and long-read amplicon and metagenomic sequencing approaches to assess their utility for generating clinical microbiome data. Across all methods, overall community taxonomic profiles were comparable and relationships between samples were conserved. Comparison of ubiquitous short-read 16S rRNA amplicon profiling to long-read profiling of the 16S-ITS-23S rRNA amplicon showed that only the latter provided strain-level community resolution and insight into novel taxa. All methods identified an active ingredient strain in treated study participants, though detection confidence was higher for long-read methods. Read coverage from both metagenomic methods provided evidence of active-ingredient strain replication in some treated participants. Compared to short-read metagenomics, approximately twice the proportion of long reads were assigned functional annotations. Finally, compositionally similar bacterial metagenome-assembled genomes (MAGs) were recovered from short-read and long-read metagenomic methods, although a greater number and more complete MAGs were recovered from long reads. Despite higher costs, both amplicon and metagenomic long-read approaches yielded added microbiome data value in the form of higher confidence taxonomic and functional resolution and improved recovery of microbial genomes compared to traditional short-read methodologies.


Assuntos
Microbiota , Humanos , Metagenoma/genética , Metagenômica/métodos , Microbiota/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos
10.
Nat Biotechnol ; 40(5): 711-719, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34980911

RESUMO

Microbial communities might include distinct lineages of closely related organisms that complicate metagenomic assembly and prevent the generation of complete metagenome-assembled genomes (MAGs). Here we show that deep sequencing using long (HiFi) reads combined with Hi-C binning can address this challenge even for complex microbial communities. Using existing methods, we sequenced the sheep fecal metagenome and identified 428 MAGs with more than 90% completeness, including 44 MAGs in single circular contigs. To resolve closely related strains (lineages), we developed MAGPhase, which separates lineages of related organisms by discriminating variant haplotypes across hundreds of kilobases of genomic sequence. MAGPhase identified 220 lineage-resolved MAGs in our dataset. The ability to resolve closely related microbes in complex microbial communities improves the identification of biosynthetic gene clusters and the precision of assigning mobile genetic elements to host genomes. We identified 1,400 complete and 350 partial biosynthetic gene clusters, most of which are novel, as well as 424 (298) potential host-viral (host-plasmid) associations using Hi-C data.


Assuntos
Metagenoma , Microbiota , Animais , Fezes , Metagenoma/genética , Metagenômica , Microbiota/genética , Análise de Sequência de DNA , Ovinos
11.
Mol Ecol Resour ; 22(3): 1100-1119, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34569723

RESUMO

Despite the prevalence of high-throughput sequencing in phylogenetics, many relationships remain difficult to resolve because of conflicting signal among genomic regions. Selection of different types of molecular markers from different genomic regions is required to overcome these challenges. For evolutionary studies in frogs, we introduce the publicly available FrogCap suite of genomic resources, which is a large collection of ~15,000 markers that unifies previous genetic sequencing efforts. FrogCap is designed to be modular, such that subsets of markers and SNPs can be selected based on the desired phylogenetic scale. FrogCap uses a variety of marker types that include exons and introns, ultraconserved elements, and previously sequenced Sanger markers, which span up to 10,000 bp in alignment lengths; in addition, we demonstrate potential for SNP-based analyses. We tested FrogCap using 121 samples distributed across five phylogenetic scales, comparing probes designed using a consensus- or exemplar genome-based approach. Using the consensus design is more resilient to issues with sensitivity, specificity, and missing data than picking an exemplar genome sequence. We also tested the impact of different bait kit sizes (20,020 vs. 40,040) on depth of coverage and found triple the depth for the 20,020 bait  kit. We observed sequence capture success (i.e., missing data, sequenced markers/bases, marker length, and informative sites) across phylogenetic scales. The incorporation of different marker types is effective for deep phylogenetic relationships and shallow population genetics studies. Having demonstrated FrogCap's utility and modularity, we conclude that these new resources are efficacious for high-throughput sequencing projects across variable timescales.


Assuntos
Anuros , Genética Populacional , Animais , Anuros/genética , Genoma , Genômica , Filogenia
12.
Mol Ecol ; 31(15): 3979-3998, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34516675

RESUMO

Secondary sympatry amongst sister lineages is strongly associated with genetic and ecological divergence. This pattern suggests that for closely related species to coexist in secondary sympatry, they must accumulate differences in traits that mediate ecological and/or reproductive isolation. Here, we characterized inter- and intraspecific divergence in three giant tree frog species whose distributions stretch across West and Central Africa. Using genome-wide single-nucleotide polymorphism data, we demonstrated that species-level divergence coincides temporally and geographically with a period of large-scale forest fragmentation during the late Pliocene. Our environmental niche models further supported a dynamic history of climatic suitability and stability, and indicated that all three species occupy distinct environmental niches. We found modest morphological differentiation amongst the species with significant divergence in tympanum diameter and male advertisement call. In addition, we confirmed that two species occur in secondary sympatry in Central Africa but found no evidence of hybridization. These patterns support the hypothesis that cycles of genetic exchange and isolation across West and Central Africa have contributed to globally significant biodiversity. Furthermore, divergence in both ecology and reproductive traits appear to have played important roles in maintaining distinct lineages. At the intraspecific level, we found that climatic refugia, precipitation gradients, marine incursions, and potentially riverine barriers generated phylogeographic structure throughout the Pleistocene and into the Holocene. Further studies examining phenotypic divergence and secondary contact amongst these geographically structured populations may demonstrate how smaller scale and more recent biogeographic barriers contribute to regional diversification.


La sympatrie secondaire parmi les espèces sœurs est fortement associée à la divergence génétique et écologique. Ce modèle suggère que pour que des espèces étroitement liées coexistent en sympatrie secondaire, elles doivent accumuler des différences dans les traits qui contribuent à l'isolement écologique ou reproductif. Ici, nous avons caractérisé la divergence inter- et intra-spécifique chez trois espèces de grenouilles arboricoles géantes dont les distributions s'étendent à travers l'Afrique de l'Ouest et Centrale. Avec des données génétiques, nous avons démontré que la divergence au niveau des espèces coïncide temporellement et géographiquement avec une période de fragmentation forestière à la fin du Pliocène. Nos modèles de niches environnementales ont soutenu une histoire dynamique de stabilité climatique, et ont indiqué que les trois espèces occupent des niches environnementales distinctes. Nous avons trouvé une différenciation morphologique modeste parmi les trois espèces mais une divergence significative dans le diamètre du tympan et les cris des mâles. De plus, nous avons confirmé que deux espèces sont présentes en sympatrie secondaire en Afrique Centrale mais n'avons trouvé aucune preuve d'hybridation. Ces résultats soutiennent l'hypothèse que les cycles d'échange génétique et d'isolement à travers l'Afrique de l'Ouest et Centrale ont contribué à une profonde concentration de biodiversité dans la région. De plus, la divergence des traits écologiques et reproducteurs semble avoir joué un rôle important dans le maintien de lignées distinctes. Au niveau intra-spécifique, nous avons constaté que les refuges climatiques, les gradients de précipitation, les incursions marines et potentiellement les barrières fluviales ont généré une structure phylogéographique pendant le Pléistocène et jusqu'à l'Holocène. Des études examinant la divergence phénotypique et le contact secondaire entre ces populations géographiquement structurées pourraient démontrer comment des barrières biogéographiques à échelle plus petite et plus récentes contribuent à la diversification régionale.


Assuntos
Anuros , Biodiversidade , África Central , Animais , Anuros/genética , DNA Mitocondrial/genética , Florestas , Variação Genética , Masculino , Filogenia , Filogeografia , Ranidae/genética
13.
Syst Biol ; 70(1): 120-132, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32521014

RESUMO

Organismal interactions drive the accumulation of diversity by influencing species ranges, morphology, and behavior. Interactions vary from agonistic to cooperative and should result in predictable patterns in trait and range evolution. However, despite a conceptual understanding of these processes, they have been difficult to model, particularly on macroevolutionary timescales and across broad geographic spaces. Here, we investigate the influence of biotic interactions on trait evolution and community assembly in monitor lizards (Varanus). Monitors are an iconic radiation with a cosmopolitan distribution and the greatest size disparity of any living terrestrial vertebrate genus. Between the colossal Komodo dragon Varanus komodoensis and the smallest Australian dwarf goannas, Varanus length and mass vary by multiple orders of magnitude. To test the hypothesis that size variation in this genus was driven by character displacement, we extended existing phylogenetic comparative methods which consider lineage interactions to account for dynamic biogeographic history and apply these methods to Australian monitors and marsupial predators. Incorporating both exon-capture molecular and morphological data sets we use a combined evidence approach to estimate the relationships among living and extinct varaniform lizards. Our results suggest that communities of Australian Varanus show high functional diversity as a result of continent-wide interspecific competition among monitors but not with faunivorous marsupials. We demonstrate that patterns of trait evolution resulting from character displacement on continental scales are recoverable from comparative data and highlight that these macroevolutionary patterns may develop in parallel across widely distributed sympatric groups.[Character displacement; comparative methods; phylogenetics; trait evolution; Varanus.].


Assuntos
Lagartos , Animais , Austrália , Tamanho Corporal , Lagartos/genética , Fenótipo , Filogenia
14.
Syst Biol ; 70(3): 440-462, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32797207

RESUMO

Alignment is a crucial issue in molecular phylogenetics because different alignment methods can potentially yield very different topologies for individual genes. But it is unclear if the choice of alignment methods remains important in phylogenomic analyses, which incorporate data from hundreds or thousands of genes. For example, problematic biases in alignment might be multiplied across many loci, whereas alignment errors in individual genes might become irrelevant. The issue of alignment trimming (i.e., removing poorly aligned regions or missing data from individual genes) is also poorly explored. Here, we test the impact of 12 different combinations of alignment and trimming methods on phylogenomic analyses. We compare these methods using published phylogenomic data from ultraconserved elements (UCEs) from squamate reptiles (lizards and snakes), birds, and tetrapods. We compare the properties of alignments generated by different alignment and trimming methods (e.g., length, informative sites, missing data). We also test whether these data sets can recover well-established clades when analyzed with concatenated (RAxML) and species-tree methods (ASTRAL-III), using the full data ($\sim $5000 loci) and subsampled data sets (10% and 1% of loci). We show that different alignment and trimming methods can significantly impact various aspects of phylogenomic data sets (e.g., length, informative sites). However, these different methods generally had little impact on the recovery and support values for well-established clades, even across very different numbers of loci. Nevertheless, our results suggest several "best practices" for alignment and trimming. Intriguingly, the choice of phylogenetic methods impacted the phylogenetic results most strongly, with concatenated analyses recovering significantly more well-established clades (with stronger support) than the species-tree analyses. [Alignment; concatenated analysis; phylogenomics; sequence length heterogeneity; species-tree analysis; trimming].


Assuntos
Lagartos , Animais , Aves , Filogenia , Serpentes
15.
J Hered ; 111(4): 379-391, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32594138

RESUMO

Sexual size dimorphism (SSD) is shaped by multiple selective forces that drive the evolution of sex-specific body size, resulting in male or female-biased SSD. Stronger selection on one sex can result in an allometric body size scaling relationship consistent with Rensch's rule or its converse. Anurans (frogs and toads) generally display female-biased SSD, but there is variation across clades and the mechanisms driving the evolution of SSD remain poorly understood. We investigated these topics in a diverse family of African treefrogs (Hyperoliidae). Hyperoliids display traits considered rare among amphibians, including sexual dichromatism and protogynous sex change. Using phylogenetic comparative methods, we tested if adult ecology, sexual dichromatism, and sex change were predictors of body size or SSD. We also tested whether hyperoliids displayed allometric interspecific body size scaling relationships. We found a majority of hyperoliid taxa display female-biased SSD, but that adult ecology and sexual dichromatism are poor predictors of sex-specific body size and SSD. Regardless of the groupings analyzed (partitioned by clades or traits), we found support for isometric body size scaling. However, we found that sex change is a significant predictor of SSD variation. Species in the Hyperolius viridiflavus complex, which putatively display this trait, show a significant reduction in SSD and are frequently sexually monomorphic in size. Although protogynous sex change needs to be validated for several of these species, we tentatively propose this trait is a novel mechanism influencing anuran body size evolution. Beyond this association, additional factors that shape the evolution of anuran body size and SSD remain elusive.


Assuntos
Anuros/genética , Tamanho Corporal , Caracteres Sexuais , Animais , Anuros/fisiologia , Evolução Biológica , Feminino , Masculino , Filogenia
16.
Mol Ecol ; 29(18): 3543-3559, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32500624

RESUMO

Mitonuclear discordance is a frequently encountered pattern in phylogeographic studies and occurs when mitochondrial and nuclear DNA display conflicting signals. Discordance among these genetic markers can be caused by several factors including confounded taxonomies, gene flow, and incomplete lineage sorting. In this study, we present a strong case of mitonuclear discordance in a species complex of toads (Bufonidae: Incilius coccifer complex) found in the Chortís Block of Central America. To determine the cause of mitonuclear discordance in this complex, we used spatially explicit genetic data to test species limits and relationships, characterize demographic history, and quantify gene flow. We found extensive mitonuclear discordance among the three recognized species within this group, especially in populations within the Chortís Highlands of Honduras. Our data reveal nuclear introgression within the Chortís Highlands populations that was most probably driven by cyclical range expansions due to climatic fluctuations. Though we determined introgression occurred within the nuclear genome, our data suggest that it is not the key factor in driving mitonuclear discordance in the entire species complex. Rather, due to a lack of discernible geographic pattern between mitochondrial and nuclear DNA, as well as a relatively recent divergence time of this complex, we concluded that mitonuclear discordance has been caused by incomplete lineage sorting. Our study provides a framework to test sources of mitonuclear discordance and highlights the importance of using multiple marker types to test species boundaries in cryptic species.


Assuntos
Núcleo Celular , DNA Mitocondrial , Animais , Bufonidae/genética , Núcleo Celular/genética , América Central , DNA Mitocondrial/genética , Honduras , Filogenia
17.
Proc Natl Acad Sci U S A ; 116(41): 20382-20387, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548391

RESUMO

Biodiversity loss is one major outcome of human-mediated ecosystem disturbance. One way that humans have triggered wildlife declines is by transporting disease-causing agents to remote areas of the world. Amphibians have been hit particularly hard by disease due in part to a globally distributed pathogenic chytrid fungus (Batrachochytrium dendrobatidis [Bd]). Prior research has revealed important insights into the biology and distribution of Bd; however, there are still many outstanding questions in this system. Although we know that there are multiple divergent lineages of Bd that differ in pathogenicity, we know little about how these lineages are distributed around the world and where lineages may be coming into contact. Here, we implement a custom genotyping method for a global set of Bd samples. This method is optimized to amplify and sequence degraded DNA from noninvasive skin swab samples. We describe a divergent lineage of Bd, which we call BdASIA3, that appears to be widespread in Southeast Asia. This lineage co-occurs with the global panzootic lineage (BdGPL) in multiple localities. Additionally, we shed light on the global distribution of BdGPL and highlight the expanded range of another lineage, BdCAPE. Finally, we argue that more monitoring needs to take place where Bd lineages are coming into contact and where we know little about Bd lineage diversity. Monitoring need not use expensive or difficult field techniques but can use archived swab samples to further explore the history-and predict the future impacts-of this devastating pathogen.


Assuntos
Anfíbios/microbiologia , Quitridiomicetos , Micoses/veterinária , Animais , Quitridiomicetos/genética , Saúde Global , Micoses/epidemiologia , Micoses/microbiologia
18.
Syst Biol ; 68(6): 859-875, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31140573

RESUMO

Theory predicts that sexually dimorphic traits under strong sexual selection, particularly those involved with intersexual signaling, can accelerate speciation and produce bursts of diversification. Sexual dichromatism (sexual dimorphism in color) is widely used as a proxy for sexual selection and is associated with rapid diversification in several animal groups, yet studies using phylogenetic comparative methods to explicitly test for an association between sexual dichromatism and diversification have produced conflicting results. Sexual dichromatism is rare in frogs, but it is both striking and prevalent in African reed frogs, a major component of the diverse frog radiation termed Afrobatrachia. In contrast to most other vertebrates, reed frogs display female-biased dichromatism in which females undergo color transformation, often resulting in more ornate coloration in females than in males. We produce a robust phylogeny of Afrobatrachia to investigate the evolutionary origins of sexual dichromatism in this radiation and examine whether the presence of dichromatism is associated with increased rates of net diversification. We find that sexual dichromatism evolved once within hyperoliids and was followed by numerous independent reversals to monochromatism. We detect significant diversification rate heterogeneity in Afrobatrachia and find that sexually dichromatic lineages have double the average net diversification rate of monochromatic lineages. By conducting trait simulations on our empirical phylogeny, we demonstrate that our inference of trait-dependent diversification is robust. Although sexual dichromatism in hyperoliid frogs is linked to their rapid diversification and supports macroevolutionary predictions of speciation by sexual selection, the function of dichromatism in reed frogs remains unclear. We propose that reed frogs are a compelling system for studying the roles of natural and sexual selection on the evolution of sexual dichromatism across micro- and macroevolutionary timescales.


Assuntos
Anuros/classificação , Filogenia , Pigmentação , África , Animais , Anuros/fisiologia , Evolução Biológica , Feminino , Masculino , Caracteres Sexuais
19.
Mol Ecol ; 27(21): 4289-4308, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30193397

RESUMO

High-throughput sequencing data have greatly improved our ability to understand the processes that contribute to current biodiversity patterns. The "vanishing refuge" diversification model is speculated for the coastal forests of eastern Africa, whereby some taxa have persisted and diversified between forest refugia, while others have switched to becoming generalists also present in non-forest habitats. Complex arrangements of geographical barriers (hydrology and topography) and ecological gradients between forest and non-forest habitats may have further influenced the region's biodiversity, but elucidation of general diversification processes has been limited by lack of suitable data. Here, we explicitly test alternative diversification modes in the coastal forests using genome-wide single nucleotide polymorphisms, mtDNA, spatial and environmental data for three forest (Arthroleptis xenodactyloides, Leptopelis flavomaculatus and Afrixalus sylvaticus) and four generalist (Afrixalus fornasini, A. delicatus, Leptopelis concolor and Leptopelis argenteus) amphibians. Multiple analyses provide insight about divergence times, spatial population structure, dispersal barriers, environmental stability and demographic history. We reveal highly congruent intra-specific diversity and population structure across taxa, with most divergences occurring during the late Pliocene and Pleistocene. Although stability models support the existence of some forest refugia, dispersal barriers and demographic models point towards idiosyncratic diversification modes across taxa. We identify a consistent role for riverine barriers in the diversification of generalist taxa, but mechanisms of diversification are more complex for forest taxa and potentially include topographical barriers, forest refugia and ecological gradients. Our work demonstrates the complexity of diversification processes in this region, which vary between forest and generalist taxa, but also for ecologically similar species with shared population boundaries.


Assuntos
Anuros/classificação , Evolução Biológica , Florestas , Refúgio de Vida Selvagem , África Oriental , Animais , Biodiversidade , DNA Mitocondrial/genética , Genética Populacional , Modelos Genéticos
20.
Zootaxa ; 4379(2): 177-198, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29689983

RESUMO

A new species of African reed frog (genus Hyperolius Rapp, 1842) is described from the Coastal Forests of the Eastern Africa Biodiversity Hotspot in northeastern Mozambique. It is currently only known from less than ten localities associated with the Mozambican coastal pans system, but may also occur in the southeastern corner of Tanzania. Phylogenetic reconstructions using the mitochondrial 16S marker revealed that it is the sister taxon of Hyperolius mitchelli (>5.6% 16S mtDNA sequence divergence) and forms part of a larger H. mitchelli complex with H. mitchelli and H. rubrovermiculatus. The new species is distinguished from other closely related Hyperolius species by genetic divergence, morphology, vocalisation, and dorsal colouration.


Assuntos
Anuros , Animais , DNA Mitocondrial , Florestas , Moçambique , Filogenia , Tanzânia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...