Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
PLoS Biol ; 20(5): e3001628, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35587463

RESUMO

Cold-water corals (CWCs) are the engineers of complex ecosystems forming unique biodiversity hotspots in the deep sea. They are expected to suffer dramatically from future environmental changes in the oceans such as ocean warming, food depletion, deoxygenation, and acidification. However, over the last decades of intense deep-sea research, no extinction event of a CWC ecosystem is documented, leaving quite some uncertainty on their sensitivity to these environmental parameters. Paleoceanographic reconstructions offer the opportunity to align the on- and offsets of CWC proliferation to environmental parameters. Here, we present the synthesis of 6 case studies from the North Atlantic Ocean and the Mediterranean Sea, revealing that food supply controlled by export production and turbulent hydrodynamics at the seabed exerted the strongest impact on coral vitality during the past 20,000 years, whereas locally low oxygen concentrations in the bottom water can act as an additional relevant stressor. The fate of CWCs in a changing ocean will largely depend on how these oceanographic processes will be modulated. Future ocean deoxygenation may be compensated regionally where the food delivery and food quality are optimal.


Assuntos
Antozoários , Animais , Biodiversidade , Ecossistema , Oceanos e Mares , Água do Mar , Água
2.
Sci Data ; 6(1): 165, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477737

RESUMO

Rapid changes in ocean circulation and climate have been observed in marine-sediment and ice cores over the last glacial period and deglaciation, highlighting the non-linear character of the climate system and underlining the possibility of rapid climate shifts in response to anthropogenic greenhouse gas forcing. To date, these rapid changes in climate and ocean circulation are still not fully explained. One obstacle hindering progress in our understanding of the interactions between past ocean circulation and climate changes is the difficulty of accurately dating marine cores. Here, we present a set of 92 marine sediment cores from the Atlantic Ocean for which we have established age-depth models that are consistent with the Greenland GICC05 ice core chronology, and computed the associated dating uncertainties, using a new deposition modeling technique. This is the first set of consistently dated marine sediment cores enabling paleoclimate scientists to evaluate leads/lags between circulation and climate changes over vast regions of the Atlantic Ocean. Moreover, this data set is of direct use in paleoclimate modeling studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...