Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Dairy Sci ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851572

RESUMO

Mare milk has a unique protein composition that makes it a preferred option for adult and infant nutrition. Several functional properties have been attributed to this milk but with little evidence yet. In fact, knowledge on mare milk composition is still limited. In particular, studies addressing the performance of mare milk proteins during human gastrointestinal digestion are scarce, which limits the understanding of mare milk nutritional quality and functionality. For this reason, the present study describes the digestibility of mare milk proteins and the release of peptides as affected by management and lactation stage, factors known to affect milk composition. Mare milk samples from 3 different farms, and collected during 6 mo of lactation (n = 54), were subjected to a static in vitro gastrointestinal model to measure peptide release and protein digestibility. In the present study, a detailed description of protein and individual amino acid behavior during the digestion process was given. For the first time, digestion of the 2 equine ß-lactoglobulin isoforms (I and II) was described individually. In addition, it was found that lactation stage and management system can significantly affect protein digestibility and peptide release during gastrointestinal digestion of mare milk. Presumably, differences in the composition of mare milk influence the protein structure and enzyme accessibility, which might have an impact on digestion behavior. Despite no specific bioactive peptides were identified, several precursors of previously described bioactive peptides were found. These findings could support the idea of mare milk as a food with added value.

2.
Food Res Int ; 178: 113947, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309908

RESUMO

To support the transition towards more sustainable and healthy diets, viable alternatives to foods of animal origin need to be identified. Many plant-based protein sources are currently marketed with claims of minimal environmental impact, but very limited consideration has been given to their protein quality and bioavailable mineral content considering the fact that animal-based foods are typically the primary source of both in Western diets. In this study, traditionally consumed soy foods (cooked soybeans, soymilk, tofu) from different Swiss soybean cultivars were nutritionally characterized and the in vitro digestibility of individual amino acids and total protein were assessed using an in vitro model based on the static INFOGEST protocol; the protein quality was evaluated using the in vitro digestible indispensable amino acid score (DIAAS). The results reveal an increase in total protein in vitro digestibility across the traditional soy food production value chain: 52.1-62.7% for cooked soybeans, 84.1-90.6% for soymilk, and 94.9-98.4% for tofu. Protein quality, determined using the recommended amino acid pattern for 0.5-3 years old, was "low" (no claim) for cooked soybeans (DIAAS < 60), while soymilk (DIAAS = 78-88) and tofu products (DIAAS = 79-91) were of similar "good" protein quality, with considerably higher DIAAS values than those of cooked soybeans (P < 0.001). The iron and zinc contents in soy foods were substantial, but high molar ratios of phytic acid (PA) to iron (PA/Fe; >8) and PA to zinc (PA/Zn; >15) indicate a possible strong inhibition of iron and zinc bioavailability. Based on the DIAAS results, soymilk and tofu would be suitable plant-based alternatives to animal-based foods, while future efforts should focus on optimizing soybean preparation to overcome the negative effects of the plant tissue matrix as well as processing steps to reduce mineral absorption inhibiting substances.


Assuntos
Glycine max , Alimentos de Soja , Animais , Aminoácidos/metabolismo , Suíça , Proteínas de Plantas/metabolismo , Ferro , Minerais , Zinco
3.
Bioresour Technol ; 390: 129849, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37813318

RESUMO

Microalgae are gaining interest as food ingredient. Assessments of functional and nutritional properties are necessary to forward their implementation. In this study, protein content and composition of eight commercially available microalgae biomasses were determined and compared to conventional food proteins. A novel procedure for the determination of the true protein content was proposed: Multiplication of proteinic nitrogen with a sample-specific nitrogen-to-protein conversion factor kA. The proteinic nitrogen was derived from the difference of total nitrogen minus non-protein nitrogen. The average kA for microalgae was 5.3 and considerable variation between different microalgae biomasses were detected. In addition, the content of non-protein nitrogen varied between 3.4% and 15.4%. The amino acid profiles of Chlorella samples were nutritionally superior to the tested plant proteins but indicated lower protein interaction tendency, potentially limiting their structuring functionality. In contrast, Auxenochlorella contained lower amounts of indispensable amino acids while showing comparable interaction potential to plant proteins.


Assuntos
Chlorella , Microalgas , Chlorella/metabolismo , Microalgas/metabolismo , Aminoácidos/metabolismo , Proteínas de Plantas/metabolismo , Nitrogênio/metabolismo , Biomassa
4.
Food Microbiol ; 116: 104343, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37689414

RESUMO

Screenings of cheese isolates revealed that the Latilactobacillus curvatus strain FAM25164 formed tryptamine and tyramine. In the present study, it was studied whether a tryptophan decarboxylase, which has rarely been described in bacteria, could be involved in the production of tryptamine. The genome of strain FAM25164 was sequenced and two amino acid decarboxylase genes of interest were identified by sequence comparisons and gene context analyses. One of the two genes, named tdc1, showed 99% identity to the tdcA gene that has recently been demonstrated by knockout studies to play a role in tyramine formation in L. curvatus. The second gene, named tdc2, was predicted to have an amino acid decarboxylase function, but could not be assigned to a metabolic function. Its protein sequence has 51% identity with Tdc1 and the tdc2 gene is part of a gene cluster not often found in publicly available genome sequences of L. curvatus. Among others, the gene cluster includes a tryptophan-tRNA ligase, indicating that tdc2 plays a role in tryptophan metabolism. To study decarboxylase activity, tdc1 and tdc2 were cloned and expressed as His6-tagged proteins in Escherichia coli. The recombinant E. coli expressing tdc1 produced tyramine, whereas E. coli expressing tdc2 produced tryptamine. The purified recombinant Tdc1 protein decarboxylated tyrosine and 2,3-dihydroxy-l-phenylalanine (l-DOPA), but not tryptophan and phenylalanine. In contrast, the purified Tdc2 was capable of decarboxylating tryptophan but not l-DOPA, tyrosine, or phenylalanine. This study describes a novel bacterial tryptophan decarboxylase (EC 4.1.1.105) that may be responsible for tryptamine formation in cheese.


Assuntos
Descarboxilases de Aminoácido-L-Aromático , Escherichia coli , Descarboxilases de Aminoácido-L-Aromático/genética , Escherichia coli/genética , Aminoácidos , Triptaminas , Tirosina , Lactobacillus , Levodopa , Fenilalanina
5.
Front Nutr ; 10: 1150581, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465141

RESUMO

Edible insects, such as mealworms (Tenebrio molitor larvae; TM) and crickets (Acheta domesticus; AD), are a sustainable, protein-dense novel food with a favorable amino acid profile, which might be an alternative to animal proteins. To assess the protein quality of TM and AD, we assessed the digestible indispensable amino acid scores (DIAAS), considering individual amino acids and their ileal amino acid digestibility, using an in vitro model based on the INFOGEST digestion protocol. In addition, we evaluated if various processing and food preparation steps influenced the in vitro digestibility of individual amino acids and the in vitro DIAAS values of TM and AD and compared them to chicken breast as a reference of excellent protein quality. The total protein in vitro digestibility ranged from 91 to 99% for TM and from 79 to 93% for AD and was negatively affected by oven-drying and, to a lesser extent, by chitin-reduction. The in vitro DIAAS values were 113, 89, and 92 for chicken, blanched TM, and blanched AD, respectively, when considering the indispensable amino acid (IAA) requirements of young children between 6 months and 3 years. Across different processing and food preparation methods, the in vitro DIAAS values ranged between 59 and 89 for TM and between 40 and 92 for AD, with the lowest values found in chitin-reduced insects. Due to their similarities to chicken regarding protein composition, total protein in vitro digestibility, and in vitro DIAAS values, TM and AD might be an alternative to traditional animal proteins, provided that suitable processing and food preparation methods are applied. Our in vitro DIAAS results suggest that TM and AD can thus be considered good-quality protein sources for children older than 6 months. The DIAAS calculations are currently based on crude protein (total nitrogen × 6.25), resulting in an overestimation of insect protein content, and leading to an underestimation and potential misclassification of protein quality. The in vitro model applied in this study is a valuable tool for product development to optimize the protein quality of edible insects. Further studies are required to assess the in vivo DIAAS of insects in humans.

6.
Front Microbiol ; 14: 1150425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187531

RESUMO

The function of the aminotransferase Aat (GenBank Protein WP_159211138) from Pediococcus acidilactici FAM 18098 was studied in vivo. For this purpose, the gene was replaced with an erythromycin resistance gene using the temperature-sensitive Escherichia coli-Pediococcus shuttle plasmid pSET4T_Δaat. The knockout was verified by PCR and genome sequencing. Subsequently, the differences between the metabolism of the knockout and of the wild-type strain were investigated by determining the free amino acids and organic acids in culture supernatants. It was found that the knockout mutant no longer synthesized 3-phenyllactic acid (PLA) and 4-hydroxyphenyllactic acid (HPLA). Additionally, the mutant strain no longer catabolized phenylalanine. Metabolic pathway analysis using the KEGG database indicate that P. acidilactici cannot synthesize α-ketoglutarate that is a predominant amino-group acceptor in many transamination reactions. To study the transfer of the amino group of phenylalanine, the wild-type strain was incubated with [15N] phenylalanine. Mass spectrometry showed that during fermentation, [15N] alanine was formed, indicating that pyruvic acid is an amino group acceptor in P. acidilactici. The present study shows that Aat plays a crucial role in PLA/HPLA biosynthesis and pyruvic acid is an amino acceptor in transamination reactions in P. acidilactici.

7.
Food Res Int ; 169: 112887, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254335

RESUMO

Mass spectrometry has become the technique of choice for the assessment of a high variety of molecules in complex food matrices. It is best suited for monitoring the evolution of digestive processes in vivo and in vitro. However, considering the variety of equipment available in different laboratories and the diversity of sample preparation methods, instrumental settings for data acquisition, statistical evaluations, and interpretations of results, it is difficult to predict a priori the ideal parameters for optimal results. The present work addressed this uncertainty by executing an inter-laboratory study with samples collected during in vitro digestion and presenting an overview of the state-of-the-art mass spectrometry applications and analytical capabilities available for studying food digestion. Three representative high-protein foods - skim milk powder (SMP), cooked chicken breast and tofu - were digested according to the static INFOGEST protocol with sample collection at five different time points during gastric and intestinal digestion. Ten laboratories analysed all digesta with their in-house equipment and applying theirconventional workflow. The compiled results demonstrate in general, that soy proteins had a slower gastric digestion and the presence of longer peptide sequences in the intestinal phase compared to SMP or chicken proteins, suggesting a higher resistance to the digestion of soy proteins. Differences in results among the various laboratories were attributed more to the peptide selection criteria than to the individual analytical platforms. Overall, the combination of mass spectrometry techniques with suitable methodological and statistical approaches is adequate for contributing to the characterisation of the recently defined digestome.


Assuntos
Digestão , Proteínas de Soja , Animais , Proteínas de Soja/metabolismo , Leite/química , Peptídeos/análise , Espectrometria de Massas
8.
Food Res Int ; 166: 112569, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36914338

RESUMO

Plant-based meat alternatives of high quality and digestibility could be a way to reduce meat consumption and, consequently, the environmental impact. However, little is known about their nutritional characteristics and digestion behaviour. Therefore, in the present study, the protein quality of beef burgers, known as excellent source of protein, was compared with the protein quality of two highly transformed veggie burgers, based on soy or pea-faba proteins, respectively. The different burgers were digested according to the INFOGEST in vitro digestion protocol. After digestion, total protein digestibility was determined, either based on total nitrogen (Kjeldahl) analysis, or after acid hydrolysis based on total amino groups (o-phthalaldehyde method) or total amino acids (TAA; by HPLC). The digestibility of individual amino acids was also determined, and the digestible indispensable amino acid score (DIAAS) was calculated based on in vitro digestibility. The impact of texturising and grilling on in vitro protein digestibility and the digestible indispensable amino acid ratio (DIAAR) was evaluated at the level of the ingredients and the finished products. As expected, the grilled beef burger had the highest in vitro DIAAS values (Leu 124 %), and grilled soy protein-based burger reached in vitro DIAAS values that could be rated as good (soy burger, SAA 94 %) protein source, according to the Food and Agriculture Organization. The texturing process did not significantly affect the total protein digestibility of the ingredients. However, grilling led to a decrease in digestibility and DIAAR of the pea-faba burger (P < 0.05), which was not observed in the soy burger, but led to an increase in DIAAR in the beef burger (P < 0.005).


Assuntos
Aminoácidos , Veganos , Animais , Bovinos , Humanos , Aminoácidos/análise , Íleo/metabolismo , Digestão , Carne/análise , Proteínas de Soja/metabolismo
9.
J Agric Food Chem ; 71(10): 4426-4439, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36853956

RESUMO

Identification of food intake biomarkers (FIBs) for fermented foods could help improve their dietary assessment and clarify their associations with cardiometabolic health. We aimed to identify novel FIBs for fermented foods in the plasma and urine metabolomes of 246 free-living Dutch adults using nontargeted LC-MS and GC-MS. Furthermore, associations between identified metabolites and several cardiometabolic risk factors were explored. In total, 37 metabolites were identified corresponding to the intakes of coffee, wine, and beer (none were identified for cocoa, bread, cheese, or yoghurt intake). While some of these metabolites appeared to originate from raw food (e.g., niacin and trigonelline for coffee), others overlapped different fermented foods (e.g., 4-hydroxybenzeneacetic acid for both wine and beer). In addition, several fermentation-dependent metabolites were identified (erythritol and citramalate). Associations between these identified metabolites with cardiometabolic parameters were weak and inconclusive. Further evaluation is warranted to confirm their relationships with cardiometabolic disease risk.


Assuntos
Doenças Cardiovasculares , Alimentos Fermentados , Adulto , Humanos , Café , Metaboloma , Doenças Cardiovasculares/epidemiologia , Biomarcadores
10.
Food Chem ; 404(Pt B): 134720, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36332577

RESUMO

The FAO recommends the digestible indispensable amino acid score (DIAAS) to determine protein quality in foods, preferably tested in vivo. Here, the INFOGESTin vitrodigestion protocol was applied and supplemented with an analytical workflow allowing the assessment of protein digestibility and DIAAS calculation. The protocol was applied to selected samples WPI, zein, collagen, black beans, pigeon peas, All-Bran®, and peanuts. The total protein digestibility, digestibility of individual amino acids (AA), and DIAAS values were established and compared with in vivo data for the same substrates. Total protein digestibility (total Nitrogen, r = 0.7, P < 0.05; primary amines (OPA), r = 0.6, P < 0.02; total AA, r = 0.6, P < 0.02) and digestibility of individual AA (r = 0.6, P < 0.0001) were in good agreement, between in vitro and in vivo, with a mean difference of 1.2 %. In vitro DIAAS was highly correlated with DIAAS obtained from in vivo true ileal digestibility values (r = 0.96, R2 = 0.89, P < 0.0001) with a mean difference of 0.1 %.


Assuntos
Aminoácidos Essenciais , Digestão , Fluxo de Trabalho , Aminoácidos Essenciais/metabolismo , Proteínas Alimentares/metabolismo , Aminoácidos/metabolismo , Íleo/metabolismo , Dieta
11.
Front Nutr ; 9: 988707, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386959

RESUMO

The high decline in liquid milk consumption in Western countries has been compensated by the increased consumption of processed dairy products and the rapidly increasing number of new plant-based beverages constantly introduced in the market, advertised as milk substitutes and placed on shelves near milk products. To provide better understanding about the nutritional value of these drinks compared with cow's milk, 27 plant-based drinks of 8 different species and two milk samples were purchased from two big retailers in Switzerland, and their composition regarding protein, carbohydrate, fat, vitamin, and mineral contents and residue load [glyphosate, aminomethylphosphonic acid (AMPA), and arsenic] was analyzed quantitatively and qualitatively. Energy and nutrient intakes were calculated and compared with the dietary reference values for Germany, Austria and Switzerland (D-A-CH). In addition, the digestible indispensable amino acid score (DIAAS) was calculated to estimate the quality of the proteins. Milk contained more energy; fat; carbohydrate; vitamins C, B2, B12, and A; biotin; pantothenic acid; calcium; phosphorus; and iodine than most plant-based drinks. Soy drinks provided slightly more protein and markedly more vitamins B1 and B6, folic acid, and vitamins E and D2 (with supplemented vitamin D2) and K1, magnesium, manganese, iron, and copper than milk and the other plant-based drinks. However, with the exception of cow's milk and soy drinks, which had > 3% protein, most milk alternatives contained ≤ 1% protein; therefore, they cannot be considered good protein sources. In regard to protein quality, milk was outstanding compared with all plant-based drinks and exhibited higher calculated DIAASs. Our results show that the analyzed plant-based drinks are not real alternatives to milk in terms of nutrient composition, even if the actual fortification is taken into account. Improved fortification is still an issue and can be optimized using the most bioavailable and soluble derivatives. Complete replacement of milk with plant-based drinks without adjusting the overall diet can lead to deficiencies of certain important nutrients in the long term.

12.
Lipids Health Dis ; 21(1): 74, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982449

RESUMO

BACKGROUND: Whereas the dietary intake of industrial trans fatty acids (iTFA) has been specifically associated with inflammation, cardiovascular disease, and type 2 diabetes, understanding the impact of dietary fats on human health remains challenging owing to their complex composition and individual effects of their lipid components on metabolism. The aim of this study is to profile the composition of blood, measured by the fatty acid (FAs) profile and untargeted metabolome of serum and the transcriptome of blood cells, in order to identify molecular signatures that discriminate dietary fat intakes. METHODS: In a parallel study, the molecular effects of consuming dairy fat containing ruminant TFA (rTFA) or margarine containing iTFA were investigated. Healthy volunteers (n = 42; 45-69 y) were randomly assigned to diets containing margarine without TFA as major source of fat (wTFA control group with 0.4 g TFA per 100 g margarine), margarine with iTFA (iTFA group with 4.1 g TFA per 100 g margarine), or butter with rTFA (rTFA group with 6.3 g TFA per 100 g butter) for 4 weeks. The amounts of test products were individually selected so that fat intake contributed to 30-33% of energy requirements and TFA in the rTFA and iTFA groups contributed to up to 2% of energy intake. Changes in fasting blood values of lipid profiles (GC with flame-ionization detection), metabolome profiles (LC-MS, GC-MS), and gene expression (microarray) were measured. RESULTS: Eighteen FAs, as well as 242 additional features measured by LC-MS (185) and GC-MS (54) showed significantly different responses to the diets (PFDR-adjusted < 0.05), mainly distinguishing butter from the margarine diets while gene expression was not differentially affected. The most abundant TFA in the butter, i.e. TFA containing (E)-octadec-11-enoic acid (C18:1 t11; trans vaccenic acid), and margarines, i.e. TFA containing (E)-octadec-9-enoic acid (C18:1 t9; elaidic acid) were reflected in the significantly different serum levels of TFAs measured after the dietary interventions. CONCLUSIONS: The untargeted serum metabolome differentiates margarine from butter intake although the identification of the discriminating features remains a bottleneck. The targeted serum FA profile provides detailed information on specific molecules differentiating not only butter from margarine intake but also diets with different content of iTFAs in margarine. TRIAL REGISTRATION: ClinicalTrials.gov NCT00933322.


Assuntos
Diabetes Mellitus Tipo 2 , Ácidos Graxos trans , Manteiga , Gorduras na Dieta/farmacologia , Humanos , Margarina
13.
Front Nutr ; 9: 851931, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600812

RESUMO

The identification and validation of biomarkers of food intake (BFIs) is a promising approach to develop more objective and complementary tools to the traditional dietary assessment methods. Concerning dairy, their evaluation in terms of intake is not simple, given the variety of existing foods, making it difficult to establish the association between specific dairy products consumption and the effects on human health, which is also dependent on the study population. Here, we aimed at identifying BFI of both milk (M) and yogurt (Y) in 14 healthy young (20-35 years) and 14 older (65-80 years). After a 3-week run-in period of dairy exclusion from the diet, the subjects acutely consumed 600 ml of M or Y. Metabolomics analyses were conducted on serum samples during the following 6 h (LC-MS and GC-MS). Several metabolites showing increased iAUC after milk or yogurt intake were considered as potential BFI, including lactose (M > Y, 2-fold), galactitol (M > Y, 1.5-fold), galactonate (M > Y, 1.2-fold), sphingosine-1-phosphate (M > Y from 2.1-fold), as well as an annotated disaccharide (Y > M, 3.6-fold). Delayed serum kinetics were also observed after Y compared to M intake lysine (+22 min), phenylalanine (+45 min), tyrosine (+30min), threonine (+38 min) 3-phenyllactic acid (+30 min), lactose (+30 min), galactitol (+45min) and galactonate (+30 min). The statistical significance of certain discriminant metabolites, such as sphingosine-1-phosphate and several free fatty acids, was not maintained in the older group. This could be related to the physiological modifications induced by aging, like dysregulated lipid metabolism, including delayed appearance of dodecanoic acid (+60 min) or altered postprandial appearance of myristic acid (+70% Cmax), 3-dehydroxycarnitine (-26% Cmin), decanoylcarnitine (-51% Cmin) and dodecanoylcarnitine (-40% Cmin). In conclusion, candidate BFI of milk or yogurt could be identified based on the modified postprandial response resulting from the fermentation of milk to yogurt. Moreover, population specificities (e.g., aging) should also be considered in future studies to obtain more accurate and specific BFI.

14.
Metabolites ; 11(6)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204298

RESUMO

Studies examining associations between self-reported dairy intake and health are inconclusive, but biomarkers hold promise for elucidating such relationships by offering objective measures of dietary intake. Previous human intervention studies identified several biomarkers for dairy foods in blood and urine using non-targeted metabolomics. We evaluated the robustness of these biomarkers in a free-living cohort in the Netherlands using both single- and multi-marker approaches. Plasma and urine from 246 participants (54 ± 13 years) who completed a food frequency questionnaire were analyzed using liquid and gas chromatography-mass spectrometry. The targeted metabolite panel included 37 previously-identified candidate biomarkers of milk, cheese, and/or yoghurt consumption. Associations between biomarkers and energy-adjusted dairy food intakes were assessed by a 'single-marker' generalized linear model, and stepwise regression was used to select the best 'multi-marker' panel. Multi-marker models that also accounted for common covariates better captured the subtle differences for milk (urinary galactose, galactitol; sex, body mass index, age) and cheese (plasma pentadecanoic acid, isoleucine, glutamic acid) over single-marker models. No significant associations were observed for yogurt. Further examination of other facets of validity of these biomarkers may improve estimates of dairy food intake in conjunction with self-reported methods, and help reach a clearer consensus on their health impacts.

15.
Metabolites ; 11(6)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208710

RESUMO

Although the composition of the human blood metabolome is influenced both by the health status of the organism and its dietary behavior, the interaction between these two factors has been poorly characterized. This study makes use of a previously published randomized controlled crossover acute intervention to investigate whether the blood metabolome of 15 healthy normal weight (NW) and 17 obese (OB) men having ingested three doses (500, 1000, 1500 kcal) of a high-fat (HF) meal can be used to identify metabolites differentiating these two groups. Among the 1024 features showing a postprandial response, measured between 0 h and 6 h, in the NW group, 135 were dose-dependent. Among these 135 features, 52 had fasting values that were significantly different between NW and OB men, and, strikingly, they were all significantly higher in OB men. A subset of the 52 features was identified as amino acids (e.g., branched-chain amino acids) and amino acid derivatives. As the fasting concentration of most of these metabolites has already been associated with metabolic dysfunction, we propose that challenging normal weight healthy subjects with increasing caloric doses of test meals might allow for the identification of new fasting markers associated with obesity.

16.
Food Chem ; 340: 128154, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33010641

RESUMO

Numerous bacteria are responsible for hydrolysis of proteins during cheese ripening. The raw milk flora is a major source of bacterial variety, starter cultures are needed for successful acidification of the cheese and proteolytic strains like Lactobacillus helveticus, are added for flavor improvement or acceleration of ripening processes. To study the impact of higher bacterial diversity in cheese on protein hydrolysis during simulated human digestion, Raclette-type cheeses were produced from raw or heat treated milk, with or without proteolytic L. helveticus and ripened for 120 days. Kinetic processes were studied with a dynamic (DIDGI®) in vitro protocol and endpoints with the static INFOGEST in vitro digestion protocol, allowing a comparison of the two in vitro protocols at the level of gastric and intestinal endpoints. Both digestion protocols resulted in comparable peptide patterns after intestinal digestion and higher microbial diversity in cheeses led to a more diverse peptidome after simulated digestion.


Assuntos
Queijo/microbiologia , Proteínas do Leite/metabolismo , Leite/microbiologia , Aminoácidos/análise , Animais , Queijo/análise , Cromatografia Líquida de Alta Pressão , Digestão , Microbiologia de Alimentos , Humanos , Lactobacillus helveticus/genética , Lactobacillus helveticus/crescimento & desenvolvimento , Lactobacillus helveticus/metabolismo , Espectrometria de Massas , Leite/metabolismo , Peptídeos/análise , Proteólise , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
17.
AMB Express ; 10(1): 100, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32472439

RESUMO

During cheese ripening, the bacterial strain Pediococcus acidilactici FAM18098 produces the non-proteinogenic amino acid, α-aminobutyrate (AABA). The metabolic processes that lead to the biosynthesis of this compound are unknown. In this study, 10 P. acidilactici, including FAM18098 and nine Pediococcus pentosaceus strains, were screened for their ability to produce AABA. All P. acidilactici strains produced AABA, whereas the P. pentosaceus strains did not. The genomes of the pediococcal strains were sequenced and searched for genes encoding aminotransferases to test the hypothesis that AABA could result from the transamination of α-ketobutyrate. A GenBank and KEGG database search revealed the presence of a species-specific aminotransferase in P. acidilactici. The gene was cloned and its gene product was produced as a His-tagged fusion protein in Escherichia coli to determine the substrate specificity of this enzyme. The purified recombinant protein showed aminotransferase activity at pH 5.5. It catalyzed the transfer of the amino group from leucine, methionine, AABA, alanine, cysteine, and phenylalanine to the amino group acceptor α-ketoglutarate. Αlpha-ketobutyrate could replace α-ketoglutarate as an amino group acceptor. In this case, AABA was produced at significantly higher levels than glutamate. The results of this study show that P. acidilactici possesses a novel aminotransferase that might play a role in cheese biochemistry and has the potential to be used in biotechnological processes for the production of AABA.

18.
J Nutr ; 150(5): 1058-1067, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32133503

RESUMO

BACKGROUND: The use of biomarkers of food intake (BFIs) in blood and urine has shown great promise for assessing dietary intake and complementing traditional dietary assessment tools whose use is prone to misreporting. OBJECTIVE: Untargeted LC-MS metabolomics was applied to identify candidate BFIs for assessing the intake of milk and cheese and to explore the metabolic response to the ingestion of these foods. METHODS: A randomized controlled crossover study was conducted in healthy adults [5 women, 6 men; age: 23.6 ± 5.0 y; BMI (kg/m2): 22.1 ± 1.7].  After a single isocaloric intake of milk (600 mL), cheese (100 g), or soy-based drink (600 mL), serum and urine samples were collected postprandially up to 6 h and after fasting after 24 h. Untargeted metabolomics was conducted using LC-MS. Discriminant metabolites were selected in serum by multivariate statistical analysis, and their mass distribution and postprandial kinetics were compared. RESULTS: Serum metabolites discriminant for cheese intake had a significantly lower mass distribution than metabolites characterizing milk intake (P = 4.1 × 10-4). Candidate BFIs for milk or cheese included saccharides, a hydroxy acid, amino acids, amino acid derivatives, and dipeptides. Two serum oligosaccharides, blood group H disaccharide (BGH) and Lewis A trisaccharide (LeA), specifically reflected milk intake but with high interindividual variability. The 2 oligosaccharides showed related but opposing trends: subjects showing an increase in either oligosaccharide did not show any increase in the other oligosaccharide. This result was confirmed in urine. CONCLUSIONS: New candidate BFIs for milk or cheese could be identified in healthy adults, most of which were related to protein metabolism. The increase in serum of LeA and BGH after cow-milk intake in adults calls for further investigations considering the beneficial health effects on newborns of such oligosaccharides in maternal milk. The trial is registered at clinicaltrials.gov as NCT02705560.


Assuntos
Queijo , Dieta , Leite , Oligossacarídeos/sangue , Oligossacarídeos/metabolismo , Adolescente , Adulto , Animais , Biomarcadores/sangue , Estudos Cross-Over , Feminino , Humanos , Masculino , Oligossacarídeos/química , Adulto Jovem
19.
Food Res Int ; 130: 108964, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32156399

RESUMO

The food additive carrageenan (E407) (CGN) is a family of sulphated galactans widely used in numerous processed foods, including dairy. There are various indications that CGN may hinder digestive proteolysis. This study sought to link CGN macromolecular characteristics to its implications on digestive proteolysis of whey protein isolate (WPI) in toddlers, adults and seniors. Size exclusion chromatography and dynamic laser scattering reveal commercial CGN samples differ in molecular weight distributions, zeta-potentials and flow behavior of WPI-CGN mixtures. Moreover, κ-CGN, ι-CGN and λ-CGN were found to contain low MW (<200 kDa) fractions at levels of 6.36 ± 2.11% (w/w), 3.64 ± 1.06% (w/w) and 2.08 ± 1.41% (w/w), respectively. In vitro human digestion of WPI-CGN mixtures and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis of digesta indicate that CGN alters the breakdown of alpha-lactalbumin, beta-lactoglobulin and lactoferrin differentially in toddlers, adults and seniors digestion conditions. Interestingly, proteomic analyses indicate there is a possible correlation between CGN degree of sulphation and the release of bioactive peptide homologues in the gut lumen. Moreover, these analyses indicate CGN compromises the bioaccessibility of essential amino acids. Altogether, this study shows CGN may attenuate whey digestive proteolysis. This effect should be taken in account by food manufacturers and regulatory agencies in view of the rising levels of exposure to CGN in the human diet.


Assuntos
Envelhecimento , Reatores Biológicos , Carragenina/metabolismo , Aditivos Alimentares , Proteínas do Soro do Leite/metabolismo , Carragenina/química , Cromatografia Líquida/métodos , Humanos , Peptídeos/química , Espectrometria de Massas em Tandem/métodos , Ácido Tricloroacético/química
20.
Food Res Int ; 130: 108996, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32156409

RESUMO

In vitro digestion systems are valuable tools for understanding and monitoring the complex behavior of food degradation during digestion, thus proving to be good candidates for replacing in vivo assays. The aim of the present work was to study protein hydrolysis in a selection of different protein sources using the harmonized INFOGEST static protocol: three isolated proteins (collagen, zein, and whey protein) and five foods (sorghum flour, wheat bran cereals, peanuts, black beans, and pigeon peas). The proteins of all the substrates were analyzed by SDS-PAGE and HPLC-MS/MS. Individual amino acid composition was analyzed by high-performance liquid chromatography (HPLC). EAA/NEAA (essential amino acids/ nonessential amino acids) ratios in the substrates from low to high were as follows: wheat bran cereals, peanuts, collagen, zein, whey protein, sorghum, pigeon peas, and black beans. The results revealed sorghum, whey protein, and zein as good sources of BCAA. In all substrates, no intact protein from the substrates was visually detected by SDS-PAGE after the intestinal phase of in vitro digestion with the INFOGEST protocol. However, digestion-resistant peptides were detected in all substrates after the intestinal digestion phase. Protein hydrolysis was high in whey protein isolate and pigeon pea and low for wheat bran cereals and bovine collagen.


Assuntos
Fibras na Dieta/análise , Proteínas Alimentares/análise , Proteínas Alimentares/metabolismo , Digestão , Fabaceae/química , Análise de Alimentos , Colágeno , Sorghum/química , Proteínas do Soro do Leite , Zeína/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...