Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38754825

RESUMO

The form of fat supplements, degree of saturation, and the fatty acid (FA) profile influence the cows' production response. The objective was to determine the effects of supplemental fats in the form of calcium salts of fatty acids (CSFA) with different ratios between palmitic (PA) and oleic (OA) acids on nutrient digestibility and cow performance. Forty-two dairy cows were assigned to 3 groups and fed (for 13 wk) rations that contained 2.2% CSFA (on a dry matter basis) with increasing the PA-to-OA ratio as follows: 1) CS45:35 - 45% PA and 35% OA, 2) CS60:30 - 60% PA and 30% OA, and 3) CS70:20 - 70% PA and 20% OA. Rumen and fecal samples were taken for volatile fatty acids (VFA) and digestibility measurements, respectively. Increasing the PA-to-OA ratio linearly decreased the milk and energy-corrected milk (ECM) yields, whereas a quadratic effect was observed for milk fat concentration (3.55, 3.94, and 3.87% in the CS45:35, CS60:30, and CS70:20 groups, respectively) and fat yield. Dry matter intake (DMI) was highest in the CS60:30 group (33.7 kg/d), and lowest in the CS70:20 group (31.6 kg/d), and a tendency of quadratic effect was observed for calculated energy balance with no difference in body weight gain among the groups. The milk-to-DMI ratio was decreased, and the ratio of ECM-to-DMI tended to decrease when the PA-to-OA ratio increased. The highest apparent total-tract digestibilities of dry matter, organic matter, and protein were observed in the CS60:30 cows, and neutral detergent fiber (NDF) tended to decrease with increasing the PA-to-OA ratio; however, digestibility of the total FA and FA subgroups (16 and 18-carbon FA) were not different among groups. Across treatments, the 18-carbon FA digestibility was higher than the 16-carbon FA digestibility. Under the current study conditions, the CS60:30 cows had the highest fat concentration and fat yield, energy output in milk, DMI, and digestibility of DM, OM, and protein. However, further research is required to fine-tune the optimal FA ratio in supplemental fat sources to maximize production and efficiency under various conditions, such as production level, stage of lactation, and diet composition.

2.
J Dairy Sci ; 106(4): 2395-2407, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36797184

RESUMO

The form of a lipid supplement, its degree of saturation, and its fatty acid (FA) profile greatly influence digestibility and cow productive response. The objective in this study was to examine the effect of fat supplements that differ in their form or FA profile on nutrient digestibility and cow performance. Forty-two mid-lactation cows (128 ± 53 d) were assigned to 3 treatment groups according to milk yield, days in milk, and body weight. For 13 wk, the cows were fed rations that contained (on a dry matter basis) (1) 2.4% of calcium salts of fatty acids (CSFA) consisting of 45% palmitic acid (PA) and 35% oleic acid (OA; CS45:35); (2) 2.4% of CSFA consisting of 80% PA and 10% OA (CS80:10); or (3) 2.0% of free FA consisting of 80% PA and 10% OA (FF80:10). Rumen samples were taken to measure the ammonia and volatile FA concentrations, and fecal samples were taken to measure the digestibility. Preplanned comparisons were CS45:35 versus CS80:10 to assess 2 CSFA supplements with different FA profiles, and CS80:10 versus FF80:10 to assess similar FA profiles in different forms. Compared with CS45:35, CS80:10 decreased the milk yields, increased the fat percentage, and tended to increase the energy-corrected milk (ECM) yields. The fat percentage of milk was highest in the FF80:10 cows (4.02%), intermediate in the CS80:10 cows (3.89%), and lowest in the CS45:35 cows (3.75%). Compared with CS80:10, FF80:10 increased milk yields (50.1 vs. 49.4 kg/d, respectively), tended to increase fat percentage, and increased 4% fat-corrected milk (4% FCM; 49.1 vs. 47.7 kg/d, respectively) and ECM yields (49.5 vs. 48.2 kg/d, respectively). Treatment had no effect on dry matter intake (DMI), and compared with CS80:10 cows, the calculated energy balance was lower in the FF80:10 cows. The 4% FCM/DMI and ECM/DMI ratios were higher in the FF80:10 group compared with the CS80:10 group. Compared with the CS80:10 cows, the FF80:10 cows had a lower rumen pH, higher propionate, lower acetate/propionate ratio, and higher total VFA. Compared with CS45:35 cows, the apparent total-tract digestibilities of neutral detergent fiber and acid detergent fiber were higher in CS80:10 cows; whereas, the apparent total-tract digestibilities of dry matter, organic matter, protein, neutral detergent fiber, and acid detergent fiber were higher in the CS80:10 cows compared with the FF80:10 cows. Compared with the CS80:10 group, the apparent digestibility of total FA was 13.0 percentage points lower in the FF80:10 cows (79.1 vs. 66.1%, respectively), and similarly, the digestibilities of 16-carbon and 18-carbon FA were lower in the FF80:10 cows than in the CS80:10 cows. In conclusion, the form, more than the FA profile of fat supplements, influenced digestibility. Further, the CSFA supplements were more digestible than the free fatty acids, regardless of the FA profile. However, energy partitioning toward production appeared to be higher in the FF80:10 cows, although the digestibility of nutrients was lower than in the CSFA product with a similar FA profile.


Assuntos
Dieta , Ácidos Graxos , Feminino , Bovinos , Animais , Ácidos Graxos/metabolismo , Dieta/veterinária , Detergentes/metabolismo , Propionatos/metabolismo , Digestão , Suplementos Nutricionais , Ácido Palmítico , Leite/metabolismo , Lactação , Ácidos Graxos não Esterificados/metabolismo , Ração Animal/análise
3.
Anim Nutr ; 12: 1-6, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36381067

RESUMO

Wastewater from dairy farms has become a major environmental and economical concern. Sodium residue in treated and untreated wastewater from dairy farms used for irrigation can lead to soil and groundwater salinization, with the risk of soil degradation. We examined the effect of reducing sodium fed to mid to late lactating cows from 0.61% (high sodium [HS]) to 0.45% (low sodium [LS]) of dry matter on dry matter intake (DMI), milk and milk-component yields, eating behavior, apparent total track digestibility, feed efficiency, and sodium excretion into the environment. We randomly assigned 28 multiparous high-yielding ( > 35 kg milk/d) cows to 1 of 2 treatment groups (LS or HS) in a crossover design, with 7 d of adaptation and 28 d of data collection. Reducing sodium in the diet reduced sodium intake from 171 to 123 g/d while lowering sodium excreted in the manure by 22%. Energy corrected milk (ECM) yield (37.4 kg/d) and sodium excretion in the milk (33.7 g/d) were similar for both groups. The DMI of LS cows was lower than that of HS cows (27.3 vs. 28 kg/d) and consequently, feed efficiency of the LS cows was higher (1.40 vs. 1.35 ECM/DMI). Eating rate, meal and visit frequency, and eating time were similar for both treatments; meal and visit duration were longer for the HS cows, and meal and visit sizes tended to be larger. Digestibility of DM and amylase-treated neutral detergent fiber remained similar. Based on the results of this study, and discussed considerations, we recommend lowering the dietary sodium content for mid to late lactating cows in commercial herds to 0.52% of DM, in order to reduce sodium excretion to the environment via urine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...