Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
ChemMedChem ; 18(24): e202300410, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37845182

RESUMO

While N-acetyl azaaurones have already been disclosed for their potential against tuberculosis (TB), their low metabolic stability remains an unaddressed liability. We now report a study designed to improve the metabolic stability and solubility of the azaaurone scaffold and to identify the structural requirements for antimycobacterial activity. Replacing the N-acetyl moiety for a N-carbamoyl group led to analogues with sub- and nanomolar potencies against M. tuberculosis H37Rv, as well as equipotent against drug-susceptible and drug-resistant M. tuberculosis isolates. The new N-carbamoyl azaaurones exhibited improved microsomal stability, compared to their N-acetylated counterparts, with several compounds displaying moderate to high kinetic solubility. The frequency of spontaneous resistance to azaaurones was observed to be in the range of 10-8 , a value that is comparable to current TB drugs in the market. Overall, these results reveal that azaaurones are amenable to structural modifications to improve metabolic and solubility liabilities, and highlight their potential as antimycobacterial agents.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Antituberculosos/farmacologia , Antituberculosos/química , Solubilidade , Testes de Sensibilidade Microbiana
2.
J Antimicrob Chemother ; 78(5): 1300-1308, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36999363

RESUMO

BACKGROUND: Carbapenem-resistant Klebsiella pneumoniae (CRKP) strains are of particular concern, especially strains with mobilizable carbapenemase genes such as blaKPC, blaNDM or blaOXA-48, given that carbapenems are usually the last line drugs in the ß-lactam class and, resistance to this sub-class is associated with increased mortality and frequently co-occurs with resistance to other antimicrobial classes. OBJECTIVES: To characterize the genomic diversity and international dissemination of CRKP strains from tertiary care hospitals in Lisbon, Portugal. METHODS: Twenty CRKP isolates obtained from different patients were subjected to WGS for species confirmation, typing, drug resistance gene detection and phylogenetic reconstruction. Two additional genomic datasets were included for comparative purposes: 26 isolates (ST13, ST17 and ST231) from our collection and 64 internationally available genomic assemblies (ST13). RESULTS: By imposing a 21 SNP cut-off on pairwise comparisons we identified two genomic clusters (GCs): ST13/GC1 (n = 11), all bearing blaKPC-3, and ST17/GC2 (n = 4) harbouring blaOXA-181 and blaCTX-M-15 genes. The inclusion of the additional datasets allowed the expansion of GC1/ST13/KPC-3 to 23 isolates, all exclusively from Portugal, France and the Netherlands. The phylogenetic tree reinforced the importance of the GC1/KPC-3-producing clones along with their rapid emergence and expansion across these countries. The data obtained suggest that the ST13 branch emerged over a decade ago and only more recently did it underpin a stronger pulse of transmission in the studied population. CONCLUSIONS: This study identifies an emerging OXA-181/ST17-producing strain in Portugal and highlights the ongoing international dissemination of a KPC-3/ST13-producing clone from Portugal.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Humanos , Klebsiella pneumoniae , Filogenia , Portugal/epidemiologia , beta-Lactamases/genética , Proteínas de Bactérias/genética , Carbapenêmicos , Genômica , Testes de Sensibilidade Microbiana , Infecções por Klebsiella/epidemiologia , Antibacterianos/farmacologia , Chaperonas Moleculares/genética , Proteínas Supressoras de Tumor/genética
3.
Eur J Clin Microbiol Infect Dis ; 42(3): 297-304, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36701032

RESUMO

To evaluate the genetic diversity and clustering rates of M. tuberculosis strains to better understand transmission among persons deprived of liberty (PDL) in Rio Grande do Sul (RS), southern Brazil. This is a cross-sectional study, including strains of M. tuberculosis isolated from PDL, stored at the Central Laboratory of RS, in the period from 2013 to 2018. The molecular characterization was performed using the MIRU-VNTR 15 loci method. A total of 598 M. tuberculosis strains were genotyped, and 37.5% were grouped into 53 clusters. Cluster sizes ranged from 2 to 34 strains. The largest cluster of the study had strains from 34 PDL, and 58.8% of the PDL of this cluster were in P01. Among the clusters formed, in 60.3%, there was at least one strain from P01. The most common strains in RS were LAM (53.2%) and Haarlem (31.1%). The LAM strain was the most likely to form clusters, and Haarlem was associated with anti-TB drug resistance. This was translational research, and the results can collaborate with the TB control programs, leading to improved strategies that allow the reduction of the TB burden in prisons.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Epidemiologia Molecular , Brasil/epidemiologia , Estudos Transversais , Genótipo , Repetições Minissatélites , Tuberculose/microbiologia , Filogenia
4.
Pharmaceuticals (Basel) ; 15(9)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36145357

RESUMO

We performed synthesis of new nitrofuranyl amides and investigated their anti-TB activity and primary genetic response of mycobacteria through whole-genome sequencing (WGS) of spontaneous resistant mutants. The in vitro activity was assessed on reference strain Mycobacterium tuberculosis H37Rv. The most active compound 11 was used for in vitro selection of spontaneous resistant mutants. The same mutations in six genes were detected in bacterial cultures grown under increased concentrations of 11 (2×, 4×, 8× MIC). The mutant positions were presented as mixed wild type and mutant alleles while increasing the concentration of the compound led to the semi-proportional and significant increase in mutant alleles. The identified genes belong to different categories and pathways. Some of them were previously reported as mediating drug resistance or drug tolerance, and counteracting oxidative and nitrosative stress, in particular: Rv0224c, fbiC, iniA, and Rv1592c. Gene-set interaction analysis revealed a certain weak interaction for gene pairs Rv1592-Rv1639c and Rv1592-Rv0224c. To conclude, this study experimentally demonstrated a multifaceted primary genetic response of M. tuberculosis to the action of nitrofurans. All three 11-treated subcultures independently presented the same six SNPs, which suggests their non-random occurrence and likely causative relationship between compound action and possible resistance mechanism.

5.
Tuberculosis (Edinb) ; 131: 102137, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34673379

RESUMO

Treatment of drug-resistant tuberculosis requires extended use of more toxic and less effective drugs and may result in retreatment cases due to failure, abandonment or disease recurrence. It is therefore important to understand the evolutionary process of drug resistance in Mycobacterium tuberculosis. We here in describe the microevolution of drug resistance in serial isolates from six previously treated patients. Drug resistance was initially investigated through phenotypic methods, followed by genotypic approaches. The use of whole-genome sequencing allowed the identification of mutations in the katG, rpsL and rpoB genes associated with drug resistance, including the detection of rare mutations in katG and mixed populations of strains. Molecular docking simulation studies of the impact of observed mutations on isoniazid binding were also performed. Whole-genome sequencing detected 266 single nucleotide polymorphisms between two isolates obtained from one patient, suggesting a case of exogenous reinfection. In conclusion, sequencing technologies can detect rare mutations related to drug resistance, identify subpopulations of resistant strains, and identify diverse populations of strains due to exogenous reinfection, thus improving tuberculosis control by guiding early implementation of appropriate clinical and therapeutic interventions.


Assuntos
Resistência a Medicamentos/genética , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Mycobacterium tuberculosis/efeitos dos fármacos , Brasil , Resistência a Medicamentos/imunologia , Estudo de Associação Genômica Ampla/métodos , Humanos , Testes de Sensibilidade Microbiana/métodos , Testes de Sensibilidade Microbiana/estatística & dados numéricos , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
6.
Sci Rep ; 11(1): 19431, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593898

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis, is one of the deadliest infectious diseases worldwide. Multidrug and extensively drug-resistant strains are making disease control difficult, and exhausting treatment options. New anti-TB drugs bedaquiline (BDQ), delamanid (DLM) and pretomanid (PTM) have been approved for the treatment of multi-drug resistant TB, but there is increasing resistance to them. Nine genetic loci strongly linked to resistance have been identified (mmpR5, atpE, and pepQ for BDQ; ddn, fgd1, fbiA, fbiB, fbiC, and fbiD for DLM/PTM). Here we investigated the genetic diversity of these loci across >33,000 M. tuberculosis isolates. In addition, epistatic mutations in mmpL5-mmpS5 as well as variants in ndh, implicated for DLM/PTM resistance in M. smegmatis, were explored. Our analysis revealed 1,227 variants across the nine genes, with the majority (78%) present in isolates collected prior to the roll-out of BDQ and DLM/PTM. We identified phylogenetically-related mutations, which are unlikely to be resistance associated, but also high-impact variants such as frameshifts (e.g. in mmpR5, ddn) with likely functional effects, as well as non-synonymous mutations predominantly in MDR-/XDR-TB strains with predicted protein destabilising effects. Overall, our work provides a comprehensive mutational catalogue for BDQ and DLM/PTM associated genes, which will assist with establishing associations with phenotypic resistance; thereby, improving the understanding of the causative mechanisms of resistance for these drugs, leading to better treatment outcomes.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Diarilquinolinas/farmacologia , Humanos , Mutação , Mycobacterium smegmatis/genética , Nitroimidazóis/farmacologia , Oxazóis/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/genética , Sequenciamento Completo do Genoma
8.
Int J Antimicrob Agents ; 58(4): 106401, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34289403

RESUMO

Genomic-based surveillance on the occurrence of drug resistance and its transmission dynamics has emerged as a powerful tool for the control of tuberculosis (TB). A whole-genome sequencing approach, phenotypic testing and clinical-epidemiological investigation were used to undertake a retrospective population-based study on drug-resistant (DR)-TB in Rio Grande do Sul, the largest state in Southern Brazil. The analysis included 305 resistant Mycobacterium tuberculosis strains sampled statewide from 2011 to 2014, and covered 75.7% of all DR-TB cases identified in this period. Lineage 4 was found to be predominant (99.3%), with high sublineage-level diversity composed mainly of 4.3.4.2 [Latin American and Mediterranean (LAM)/RD174], 4.3.3 (LAM/RD115) and 4.1.2.1 (Haarlem/RD182) sublineages. Genomic diversity was also reflected in resistance of the variants to first-line drugs. A large number of distinct resistance-conferring mutations, including variants that have not been reported previously in any other setting worldwide, and 22 isoniazid-monoresistant strains with mutations described as disputed in the rpoB gene but causing rifampicin resistance generally missed by automated phenotypic tests as BACTEC MGIT. Using a cut-off of five single nucleotide polymorphisms, the estimated recent transmission rate was 55.1%, with 168 strains grouped into 28 genomic clusters. The most worrying fact concerns multi-drug-resistant (MDR) strains, of which 73.4% were clustered. Different resistance profiles and acquisition of novel mutations intraclusters revealed important amplification of resistance in the region. This study described the diversity of M. tuberculosis strains, the basis of drug resistance, and ongoing transmission dynamics across the largest state in Southern Brazil, stressing the urgent need for MDR-TB transmission control state-wide.


Assuntos
Antibióticos Antituberculose/uso terapêutico , Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA/genética , Farmacorresistência Bacteriana Múltipla/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/genética , Tuberculose Resistente a Múltiplos Medicamentos/transmissão , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antituberculosos/uso terapêutico , Brasil/epidemiologia , Perfilação da Expressão Gênica , Genoma Bacteriano/genética , Humanos , Isoniazida/uso terapêutico , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Mycobacterium tuberculosis/genética , Polimorfismo de Nucleotídeo Único/genética , Estudos Retrospectivos , Rifampina/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Sequenciamento Completo do Genoma , Adulto Jovem
10.
Sci Rep ; 10(1): 12891, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732910

RESUMO

Mycobacterium tuberculosis (M.tb), the pathogen responsible for tuberculosis (TB) poses as the major cause of death among infectious diseases. The knowledge about the molecular diversity of M.tb enables the implementation of more effective surveillance and control measures and, nowadays, Whole Genome Sequencing (WGS) holds the potential to produce high-resolution epidemiological data in a high-throughput manner. Florianópolis, the state capital of Santa Catarina (SC) in south Brazil, shows a high TB incidence (46.0/100,000). Here we carried out a WGS-based evaluation of the M.tb strain diversity, drug-resistance and ongoing transmission in the capital metropolitan region. Resistance to isoniazid, rifampicin, streptomycin was identified respectively in 4.0% (n = 6), 2.0% (n = 3) and 1.3% (n = 2) of the 151 studied strains by WGS. Besides, resistance to pyrazinamide and ethambutol was detected in 0.7% (n = 1) and reistance to ethionamide and fluoroquinolone (FQ) in 1.3% (n = 2), while a single (0.7%) multidrug-resistant (MDR) strain was identified. SNP-based typing classified all isolates into M.tb Lineage 4, with high proportion of sublineages LAM (60.3%), T (16.4%) and Haarlem (7.9%). The average core-genome distance between isolates was 420.3 SNPs, with 43.7% of all isolates grouped across 22 genomic clusters thereby showing the presence of important ongoing TB transmission events. Most clusters were geographically distributed across the study setting which highlights the need for an urgent interruption of these large transmission chains. The data conveyed by this study shows the presence of important and uncontrolled TB transmission in the metropolitan area and provides precise data to support TB control measures in this region.


Assuntos
Mycobacterium tuberculosis , Filogenia , Tuberculose Resistente a Múltiplos Medicamentos , Adulto , Antituberculosos/farmacologia , Brasil/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/genética , Tuberculose Resistente a Múltiplos Medicamentos/transmissão , Sequenciamento Completo do Genoma
11.
Emerg Microbes Infect ; 9(1): 1342-1353, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32538300

RESUMO

The Beijing genotype comprises a highly disseminated strain type that is frequently associated with multidrug resistant (MDR) tuberculosis (TB) and increased transmissibility but, countries such as Portugal and Guinea-Bissau fall outside the regions phylogeographically associated with this specific genotype. Nevertheless, recent data shows that this genotype might be gradually emerging in these two countries as an underlying cause of primary MDR-TB. Here, we describe the emergence of Mycobacterium tuberculosis Beijing strains associated with MDR-TB in Portugal and Guinea-Bissau demonstrating the presence of the well described superclusters 100-32 and 94-32 in Portugal and Guinea-Bissau, respectively. Genome-wide analysis and comparison with a global genomic dataset of M. tuberculosis Beijing strains, revealed the presence of two genomic clusters encompassing isolates from Portugal and Guinea-Bissau, GC1 (n = 121) and GC2 (n = 39), both of which bore SNP signatures compatible with the 100-32/B0/W148 and 94-32/Central Asia Outbreak clades, respectively. Moreover, GC2 encompasses a cross-border cluster between Portugal, Guinea-Bissau and Brazil thus supporting migration-associated introduction of MDR-TB and subsequent clonal expansion at the community-level. The comparison with global Beijing datasets demonstrates the global reach of the disease and its complex dissemination across multiple countries while in parallel there are clear microevolutionary trajectories towards extensively drug resistant TB.


Assuntos
DNA Bacteriano/genética , Farmacorresistência Bacteriana Múltipla , Mycobacterium tuberculosis/classificação , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Sequenciamento Completo do Genoma/métodos , Pequim , Brasil , Guiné-Bissau , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Filogenia , Filogeografia , Portugal
12.
Sci Rep ; 10(1): 2600, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054988

RESUMO

Portugal is a low incidence country for tuberculosis (TB) disease. Now figuring among TB low incidence countries, it has since the 1990s reported multidrug resistant and extensively drug resistant (XDR) TB cases, driven predominantly by two strain-types: Lisboa3 and Q1. This study describes the largest characterization of the evolutionary trajectory of M/XDR-TB strains in Portugal, spanning a time-period of two decades. By combining whole-genome sequencing and phenotypic susceptibility data for 207 isolates, we report the geospatial patterns of drug resistant TB, particularly the dispersion of Lisboa3 and Q1 clades, which underly 64.2% and 94.0% of all MDR-TB and XDR-TB isolates, respectively. Genomic-based similarity and a phylogenetic analysis revealed multiple clusters (n = 16) reflecting ongoing and uncontrolled recent transmission of M/XDR-TB, predominantly associated with the Lisboa3 and Q1 clades. These clades are now thought to be evolving in a polycentric mode across multiple geographical districts. The inferred evolutionary history is compatible with MDR- and XDR-TB originating in Portugal in the 70's and 80's, respectively, but with subsequent multiple emergence events of MDR and XDR-TB particularly involving the Lisboa3 clade. A SNP barcode was defined for Lisboa3 and Q1 and comparison with a phylogeny of global strain-types (n = 28 385) revealed the presence of Lisboa3 and Q1 strains in Europe, South America and Africa. In summary, Portugal displays an unusual and unique epidemiological setting shaped by >40 years of uncontrolled circulation of two main phylogenetic clades, leading to a sympatric evolutionary trajectory towards XDR-TB with the potential for global reach.


Assuntos
Tuberculose Extensivamente Resistente a Medicamentos/epidemiologia , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Genoma Bacteriano , Mycobacterium tuberculosis/genética , Variação Genética , Humanos , Mycobacterium tuberculosis/isolamento & purificação , Filogenia , Polimorfismo de Nucleotídeo Único , Portugal/epidemiologia , Sequenciamento Completo do Genoma
13.
Sci Rep ; 10(1): 1747, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019968

RESUMO

Lack of routine surveillance in countries endemic for bovine tuberculosis (TB) and limited laboratory support contributes to the inability to differentiate the Mycobacterium tuberculosis Complex species, leading to an underestimated burden of the disease. Here, Whole-Genome Sequencing of Mycobacterium bovis isolated from tissues with TB-like lesions obtained from cattle and buffalos at Marajó Island, Brazil, demonstrates that recent transmission of M. bovis is ongoing at distinct sites. Moreover, the M. bovis epidemiology in this setting is herein found to be dominated by an endemic and unique clade composed of strains evolved from a common ancestor that are now genetically differentiated from other M. bovis clades. Additionally, envisioning a rapid strain differentiation and tracing across multiple settings, 28 globally validated strain-specific SNPs were identified, three of which considered as robust markers for the M. bovis Marajó strain. In conclusion, this study contributes with data regarding the identification of a novel M. bovis phylogenetic clade responsible for ongoing transmission events in both cattle and buffalo species in Brazil, provides a framework to investigate the dissemination of this highly prevalent strain and, holds the potential to inform TB control strategies that may help to prevent the spread of bovine and zoonotic TB.


Assuntos
Mycobacterium bovis/genética , Tuberculose Bovina/microbiologia , Animais , Brasil , Búfalos , Bovinos , Mycobacterium tuberculosis/genética , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Tuberculose/microbiologia , Sequenciamento Completo do Genoma/métodos , Zoonoses/microbiologia
14.
Infect Genet Evol ; 78: 104127, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31783187

RESUMO

Drug-resistant tuberculosis (DR-TB) is major problem in the fight against TB. Multidrug resistant (MDR) TB patients have a reduced treatment success rates and for, extensively drug-resistant (XDR) TB the cure rate does not exceed 25% in many countries. To evaluate the pre-XDR-TB and XDR-TB prevalence and transmission in Rio Grande do Sul State, in southern Brazil, we performed a retrospective WGS-based analysis of 87 MDR-TB cases, aiming to identify resistance-conferring mutations and its phylogenetic distinctiveness. Using a five SNP threshold for genomic clustering, 60 strains were genomically linked within 10 clusters, including 14 likely transmission events identified by retrospective conventional epidemiological investigation. Moreover, five likely transmission events involved 17 patients deprived of liberty in the same prison establishment. Mutations associated with isoniazid and rifampicin resistance were identified respectively in 97.70% and 98.85% of MDR M.tb strains, more frequently in katG and rpoB genes. In total, we identified eight (9.19%) pre-XDR and four (4.59%) XDR M.tb strains. Resistance to ofloxacin was observed in seven (8.04%) strains, all of them presenting resistance-conferring mutations. Phenotypic resistance from capreomycin and kanamycin was found in seven (8.04%) and four (4.59%) strains respectively, but no classic mutations associated with resistance to these drugs was identified. The results put in evidence a scenario involving multiple phylogenetically distinctive clades associated with pre-XDR and XDR-TB in the largest state of southern Brazil, while stressing the potential of using WGS to predict anti-TB drug resistance and need to halt MDR-TB transmission in the region.


Assuntos
Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Adulto , Antituberculosos/farmacologia , Brasil/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Tuberculose Extensivamente Resistente a Medicamentos/epidemiologia , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Feminino , Variação Genética , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Repetições Minissatélites , Mutação , Mycobacterium tuberculosis/isolamento & purificação , Filogenia , Polimorfismo de Nucleotídeo Único , Tuberculose Resistente a Múltiplos Medicamentos/transmissão , Sequenciamento Completo do Genoma
15.
Am J Trop Med Hyg ; 101(4): 774-779, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31392954

RESUMO

National border areas are special places for the spread of Mycobacterium tuberculosis (MTB). These regions concentrate vulnerable populations and constant population movements. Understanding the dynamics of the transmission of MTB is fundamental to propose control measures and to monitor drug resistance. We conducted a population-based prospective study of tuberculosis (TB) to evaluate molecular characteristics of MTB isolates circulating in Roraima, a state on the border of Venezuela and Guyana. Eighty isolates were genotyped by IS6110-RFLP (restriction fragment length polymorphism), spoligotyping, and 24-locus mycobacterial interspersed repetitive unit-variable number of repeats tandem (MIRU-VNTR). Drug susceptibility tests were performed by using the proportion method and GeneXpert® MTB/RIF (Cepheid, Sunnyvale, CA). Isolates showing a phenotypic resistance profile were submitted to polymerase chain reaction (PCR) and sequencing. Spoligotyping showed 40 distinct patterns with a high prevalence of Latin-American and Mediterranean (LAM), Haarlem (H), and the "ill-defined" T clades. Mycobacterial interspersed repetitive unit -VNTR and IS6110-RFLP showed clustering rates of 21.3% and 30%, respectively. Drug resistance was detected in 11 (15.1%) isolates, and all were found to have primary resistance; among these, six (8.2%) isolates were streptomycin mono-resistant, four (5.4%) isoniazid mono-resistant, and one (1.3%) multidrug resistant. This is the first study on the molecular epidemiology and drug resistance profile of MTB from Roraima. Herein, we describe high diversity of genetic profiles circulating in this region that may be driven by the introduction of new strain types because of large population flow in this region. In summary, our results showed that analyses of these circulating strains can contribute to a better understanding of TB epidemiology in the northern Brazilian border and be useful to establish public health policies on TB prevention.


Assuntos
Variação Genética , Mycobacterium tuberculosis/genética , Tuberculose/epidemiologia , Adolescente , Adulto , Brasil/epidemiologia , Análise por Conglomerados , Farmacorresistência Bacteriana , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Repetições Minissatélites/genética , Epidemiologia Molecular , Mycobacterium tuberculosis/isolamento & purificação , Polimorfismo de Fragmento de Restrição , Estudos Prospectivos , Tuberculose/microbiologia , Adulto Jovem
16.
ChemMedChem ; 14(16): 1537-1546, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31294529

RESUMO

Herein we report the screening of a small library of aurones and their isosteric counterparts, azaaurones and N-acetylazaaurones, against Mycobacterium tuberculosis. Aurones were found to be inactive at 20 µm, whereas azaaurones and N-acetylazaaurones emerged as the most potent compounds, with nine derivatives displaying MIC99 values ranging from 0.4 to 2.0 µm. In addition, several N-acetylazaaurones were found to be active against multidrug-resistant (MDR) and extensively drug-resistant (XDR) clinical M. tuberculosis isolates. The antimycobacterial mechanism of action of these compounds remains to be determined; however, a preliminary mechanistic study confirmed that they do not inhibit the mycobacterial cytochrome bc1 complex. Additionally, microsomal metabolic stability and metabolite identification studies revealed that N-acetylazaaurones are deacetylated to their azaaurone counterparts. Overall, these results demonstrate that azaaurones and their N-acetyl counterparts represent a new entry in the toolbox of chemotypes capable of inhibiting M. tuberculosis growth.


Assuntos
Antituberculosos/farmacologia , Benzofuranos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Indóis/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Animais , Antituberculosos/síntese química , Antituberculosos/metabolismo , Benzofuranos/síntese química , Benzofuranos/metabolismo , Estabilidade de Medicamentos , Células HEK293 , Humanos , Indóis/síntese química , Indóis/metabolismo , Camundongos , Testes de Sensibilidade Microbiana , Microssomos Hepáticos/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia
17.
Dis Aquat Organ ; 133(3): 189-194, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-31187733

RESUMO

Tuberculosis (TB) in pinnipeds is typically caused by Mycobacterium pinnipedii, which has also been associated with infections in other species, such as cattle and humans. As a result, this pathogen has zoonotic potential and is a public health concern. In 2016, a female South American sea lion Otaria flavescens in southern Brazil presented with emaciation and severe dyspnea and died within 3 h of capture. Gross pathology identified pulmonary granulomas, and Ziehl-Neelsen stain identified acid-fast bacilli. M. tuberculosis complex bacteria were confirmed by a BD BACTEC™ MGIT™ 320 detection system using fibrinous exudate, lung granulomas and thoracic fluid. Molecular characterization by spoligotyping showed a hybridization pattern characteristic of M. pinnipedii (SIT593/PINI1). Currently, there is a paucity of data concerning the transmission and epidemiology of M. pinnipedii in pinniped populations in South America. The case report shows that the disease appeared in a free-ranging beached sea lion on the coast, and further surveillance is needed to determine the origin of this TB because of its potential impact on public health.


Assuntos
Mycobacterium , Leões-Marinhos , Tuberculose , Animais , Brasil , Bovinos , Feminino , Humanos , Tuberculose/veterinária
18.
Infect Genet Evol ; 71: 159-165, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30928606

RESUMO

Tuberculosis among foreign-born patients is a key indicator of country-level epidemiological profiles and, of an increasing concern in Europe given the more intensified migratory waves of refugees. Since Portugal presents a lower immigrant-associated TB incidence rate when compared to other European countries, we sought to characterize the epidemiology and transmission dynamics among the foreign-born population coming from Portuguese-speaking countries that are associated with higher TB incidences. In the present study we analyzed 133 Mycobacterium tuberculosis isolates obtained from foreign-born individuals over a three-year period in Lisbon, Portugal, using molecular epidemiological methods such as spoligotyping and 24-loci MIRU-VNTR. Moreover, all strains were subjected to drug susceptibility testing. The genetic profiles obtained suggest that strain importation from Portuguese speaking countries plays a less important role in TB epidemiology but instead argue in favor of a high degree of penetrance of Portuguese endemic strains to the migrant population, including multidrug resistant strains, which is particularly relevant to active screening programs.


Assuntos
Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/transmissão , Tuberculose/epidemiologia , Tuberculose/transmissão , Doenças Transmissíveis Importadas/epidemiologia , Doenças Transmissíveis Importadas/transmissão , Europa (Continente)/epidemiologia , Feminino , Técnicas de Genotipagem , Nível de Saúde , Humanos , Masculino , Testes de Sensibilidade Microbiana , Repetições Minissatélites/genética , Epidemiologia Molecular/métodos , Filogenia , Vigilância da População , Portugal/epidemiologia , Migrantes , Tuberculose/microbiologia
19.
Tuberculosis (Edinb) ; 115: 81-88, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30948181

RESUMO

Whole-genome sequencing (WGS) offers unprecedented resolution for tracking Mycobacterium tuberculosis transmission and antibiotic-resistance spread. Still, the establishment of standardized WGS-based pipelines and the definition of epidemiological clusters based on genetic relatedness are under discussion. We aimed to implement a dynamic gene-by-gene approach, fully relying on freely available software, for prospective WGS-based tuberculosis surveillance, demonstrating its application for detecting transmission chains by retrospectively analysing all M/XDR strains isolated in 2013-2017 in Portugal. We observed a good correlation between genetic relatedness and epidemiological links, with strongly epilinked clusters displaying mean pairwise allele differences (AD) always below 0.3% (ratio of mean AD over the total number of shared loci between same-cluster strains). This data parallels the genetic distances acquired by the core-SNV analysis, while providing higher resolution and epidemiological concordance than MIRU-VNTR genotyping. The dynamic analysis of strain sub-sets (i.e., increasing the number of shared loci within each sub-set) also strengthens the confidence in detecting epilinked clusters. This gene-by-gene strategy also offers several practical benefits (e.g., reliance on freely-available software, scalability and low computational requirements) that further consolidated its suitability for a timely and robust prospective WGS-based laboratory surveillance of M/XDR-TB cases.


Assuntos
Genes Bacterianos/genética , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/genética , Sequenciamento Completo do Genoma , Genoma Bacteriano , Genótipo , Humanos , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Portugal/epidemiologia , Estudos Prospectivos , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia
20.
BMC Genomics ; 20(1): 252, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30922221

RESUMO

BACKGROUND: Continuing evolution of the Mycobacterium tuberculosis (Mtb) complex genomes associated with resistance to anti-tuberculosis drugs is threatening tuberculosis disease control efforts. Both multi- and extensively drug resistant Mtb (MDR and XDR, respectively) are increasing in prevalence, but the full set of Mtb genes involved are not known. There is a need for increased sensitivity of genome-wide approaches in order to elucidate the genetic basis of anti-microbial drug resistance and gain a more detailed understanding of Mtb genome evolution in a context of widespread antimicrobial therapy. Population structure within the Mtb complex, due to clonal expansion, lack of lateral gene transfer and low levels of recombination between lineages, may be reducing statistical power to detect drug resistance associated variants. RESULTS: To investigate the effect of lineage-specific effects on the identification of drug resistance associations, we applied genome-wide association study (GWAS) and convergence-based (PhyC) methods to multiple drug resistance phenotypes of a global dataset of Mtb lineages 2 and 4, using both lineage-wise and combined approaches. We identify both well-established drug resistance variants and novel associations; uniquely identifying associations for both lineage-specific and -combined GWAS analyses. We report 17 potential novel associations between antimicrobial resistance phenotypes and Mtb genomic variants. CONCLUSIONS: For GWAS, both lineage-specific and -combined analyses are useful, whereas PhyC may perform better in contexts of greater diversity. Unique associations with XDR in lineage-specific analyses provide evidence of diverging evolutionary trajectories between lineages 2 and 4 in response to antimicrobial drug therapy.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Mycobacterium tuberculosis/genética , Polimorfismo Genético , Tuberculose Resistente a Múltiplos Medicamentos , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla , Evolução Molecular , Transferência Genética Horizontal , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...