Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 12317, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32704052

RESUMO

The contribution of the nucleotide-binding oligomerization domain protein NOD1 to obesity has been investigated in mice fed a high fat diet (HFD). Absence of NOD1 accelerates obesity as early as 2 weeks after feeding a HFD. The obesity was due to increases in abdominal and inguinal adipose tissues. Analysis of the resting energy expenditure showed an impaired function in NOD1-deficient animals, compatible with an alteration in thyroid hormone homeostasis. Interestingly, free thyroidal T4 increased in NOD1-deficient mice fed a HFD and the expression levels of UCP1 in brown adipose tissue were significantly lower in NOD1-deficient mice than in the wild type animals eating a HFD, thus contributing to the observed adiposity in NOD1-deficient mice. Feeding a HFD resulted in an alteration of the proinflammatory profile of these animals, with an increase in the infiltration of inflammatory cells in the liver and in the white adipose tissue, and an elevation of the circulating levels of TNF-α. In addition, alterations in the gut microbiota in NOD1-deficient mice correlate with increased vulnerability of their ecosystem to the HFD challenge and affect the immune-metabolic phenotype of obese mice. Together, the data are compatible with a protective function of NOD1 against low-grade inflammation and obesity under nutritional conditions enriched in saturated lipids. Moreover, one of the key players of this early obesity onset is a dysregulation in the metabolism and release of thyroid hormones leading to reduced energy expenditure, which represents a new role for these hormones in the metabolic actions controlled by NOD1.


Assuntos
Dieta Hiperlipídica , Comportamento Alimentar , Microbioma Gastrointestinal , Homeostase , Proteína Adaptadora de Sinalização NOD1/deficiência , Hormônios Tireóideos/metabolismo , Adipócitos/metabolismo , Tecido Adiposo Branco/patologia , Animais , Biodiversidade , Peso Corporal , Fígado Gorduroso/patologia , Teste de Tolerância a Glucose , Inflamação/patologia , Intestinos/patologia , Lipídeos/química , Fígado/patologia , Metabolômica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Adaptadora de Sinalização NOD1/metabolismo , Obesidade/sangue , Obesidade/microbiologia , Obesidade/patologia , Glândula Tireoide/patologia , Glândula Tireoide/fisiopatologia , Hormônios Tireóideos/sangue
2.
Chemosphere ; 247: 125800, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31927182

RESUMO

Long-term operational stability of biotrickling filters (BTFs) degrading volatile organic compounds (VOCs) is dependent on both physicochemical as well as biological properties. Effects of increasingly stressful levels of air pollutants on the microbial structure of biofilms within BTFs are not well understood, especially for VOCs such as styrene. To investigate the relationship between biofilm biodiversity and operational stability, the temporal dynamics of a biofilm from a biotrickling filter subjected to stepwise increasing levels of air polluted with styrene was investigated using 16S rDNA pyrosequencing and PCR-denaturing gradient gel electrophoresis (PCR-DGGE). As styrene contaminant loads were increased, microbial community composition was distinctly altered and diversity was initially reduced in early stages but gradually stabilized and increased diversity in later stages, suggesting a recovery and acclimatization period within the microbial community during incremental exposure of the pollutant. Although temporary reductions in known styrene-degrading bacterial genera (Pseudomonas and Rhodococcus) occurred under increased styrene loads, stable BTF performance was maintained due to functional redundancy. New candidate genera for styrene degradation (Azoarcus, Dokdonella) were identified in conditions of high styrene loads, and may have supported the observed stable BTF performance throughout the experiment. Styrene inlet load was found to be important modulator of community composition and may have been partly responsible for the observed temporary reductions of Pseudomonas. Notable differences between dominant genera detected via pyrosequencing compared to species detected by PCR-DGGE suggests that simultaneous implementation of both techniques is valuable for fully characterizing dynamic microbial communities.


Assuntos
Bactérias/isolamento & purificação , Biodegradação Ambiental , Biodiversidade , Biofilmes/efeitos dos fármacos , Filtração/instrumentação , Estireno/farmacologia , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/metabolismo , Poluentes Atmosféricos/farmacologia , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Eletroforese em Gel de Gradiente Desnaturante/métodos , Eletroforese em Gel de Gradiente Desnaturante/normas , Filtração/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Microbiota/efeitos dos fármacos , Estireno/metabolismo , Compostos Orgânicos Voláteis/metabolismo
3.
Clin Nutr ; 37(6 Pt A): 2191-2197, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30033172

RESUMO

The gut microbiota coexists in partnership with the human host through adaptations to environmental and physiological changes that help maintain dynamic homeostatic healthy states. Break-down of this delicate balance under sustained exposure to stressors (e.g. unhealthy diets) can, however, contribute to the onset of disease. Diet is a key modifiable environmental factor that modulates the gut microbiota and its metabolic capacities that, in turn, could impact human physiology. On this basis, the diet and the gut microbiota could act as synergistic forces that provide resilience against disease or that speed the progress from health to disease states. Associations between unhealthy dietary patterns, non-communicable diseases and intestinal dysbiosis can be explained by this hypothesis. Translational studies showing that dietary-induced alterations in microbial communities recapitulate some of the pathological features of the original host further support this notion. In this introductory paper by the European project MyNewGut, we briefly summarize the investigations conducted to better understand the role of dietary patterns and food components in metabolic and mental health and the specificities of the microbiome-mediating mechanisms. We also discuss how advances in the understanding of the microbiome's role in dietary health effects can help to provide acceptable scientific grounds on which to base dietary advice for promoting healthy living.


Assuntos
Dieta , Microbioma Gastrointestinal , Saúde Mental , Metabolismo , Animais , Humanos , Camundongos
4.
Food Funct ; 9(3): 1672-1682, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29473070

RESUMO

Grape seed proanthocyanidin extract (GSPE) modulates several parameters involved in metabolic syndrome. GSPE is a mixture of compounds, some which are rapidly absorbed, while others remain in the lumen where they might have effects that are translated to the whole organism. Our aim was to decipher if the 8-day treatment of GSPE, previously shown to reduce food intake, induces changes in the microbiota and enterohormone secretion. The ratio of Firmicutes : Bacteroidetes was lower in the microbiota of GSPE-treated rats compared to controls, and differences in several taxonomic families and genera were observed. Such modulation led to a reduction in cecal butyrate content. GSPE also increased plasma glucagon-like-peptide-1 (GLP-1). Gallic acid did not induce major changes in the microbiota profile nor in GLP-1 secretion. Correlations between several microbiota taxa and plasma triacylglycerol, adiposity, and enterohormones were observed. Modulation of microbiota may be one of the mechanism by which GSPE impacts metabolic health.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Extrato de Sementes de Uva/administração & dosagem , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/microbiologia , Proantocianidinas/administração & dosagem , Adiposidade/efeitos dos fármacos , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Butiratos/metabolismo , Feminino , Ácido Gálico/metabolismo , Humanos , Síndrome Metabólica/metabolismo , Ratos , Ratos Wistar
5.
Mol Nutr Food Res ; 61(1)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27287778

RESUMO

Diet has been shown to be a major factor in modulating the structure of the mammalian gut microbiota by providing specific nutrient sources and inducing environmental changes (pH, bile acids) in the gut ecosystem. Long-term dietary patterns and short-term interventions have been shown to induce changes in gut microbiota structure and function, with several studies revealing metabolic changes likely resulting from the host microbiota cross-talk, which ultimately could influence host physiology. However, a more precise identification of the specific dietary patterns and food constituents that effectively modulate the gut microbiota and bring a predictable benefit to the host metabolic phenotype is needed to establish microbiome-based dietary recommendations. Here, we briefly review the existing data regarding gut microbiota changes induced by different macronutrients and the resulting metabolites produced via their respective fermentation, including their potential effects on obesity and associated metabolic disorders. We also discuss major limitations of current dietary intervention studies as well as future needs of applying cutting-edge "omic" techniques and of progressing in functional microbiota gene discovery to establish robust causal relationships between the dietary microbiota induced changes and metabolic health or disease.


Assuntos
Dieta , Gorduras na Dieta/farmacologia , Fibras na Dieta/farmacologia , Microbioma Gastrointestinal , Obesidade/microbiologia , Bactérias/metabolismo , Ácidos e Sais Biliares/metabolismo , Dieta Hiperlipídica/efeitos adversos , Proteínas Alimentares/farmacologia , Fermentação , Humanos , Inflamação/microbiologia , Obesidade/dietoterapia , Obesidade/metabolismo , Grãos Integrais
6.
Gigascience ; 5: 4, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26823973

RESUMO

BACKGROUND: The miniaturised and portable DNA sequencer MinION™ has been released to the scientific community within the framework of an early access programme to evaluate its application for a wide variety of genetic approaches. This technology has demonstrated great potential, especially in genome-wide analyses. In this study, we tested the ability of the MinION™ system to perform amplicon sequencing in order to design new approaches to study microbial diversity using nearly full-length 16S rDNA sequences. RESULTS: Using R7.3 chemistry, we generated more than 3.8 million events (nt) during a single sequencing run. These data were sufficient to reconstruct more than 90 % of the 16S rRNA gene sequences for 20 different species present in a mock reference community. After read mapping and 16S rRNA gene assembly, consensus sequences and 2d reads were recovered to assign taxonomic classification down to the species level. Additionally, we were able to measure the relative abundance of all the species present in a mock community and detected a biased species distribution originating from the PCR reaction using 'universal' primers. CONCLUSIONS: Although nanopore-based sequencing produces reads with lower per-base accuracy compared with other platforms, the MinION™ DNA sequencer is valuable for both high taxonomic resolution and microbial diversity analysis. Improvements in nanopore chemistry, such as minimising base-calling errors and the nucleotide bias reported here for 16S amplicon sequencing, will further deliver more reliable information that is useful for the specific detection of microbial species and strains in complex ecosystems.


Assuntos
Nanoporos , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Bactérias/classificação , Bactérias/genética , Técnicas de Tipagem Bacteriana/métodos , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Reprodutibilidade dos Testes , Especificidade da Espécie
7.
Appl Microbiol Biotechnol ; 99(1): 3-18, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24950754

RESUMO

Microbial biofilms are essential components in the elimination of pollutants within biofilters, yet still little is known regarding the complex relationships between microbial community structure and biodegradation function within these engineered ecosystems. To further explore this relationship, 16S rDNA tag pyrosequencing was applied to samples taken at four time points from a styrene-degrading biofilter undergoing variable operating conditions. Changes in microbial structure were observed between different stages of biofilter operation, and the level of styrene concentration was revealed to be a critical factor affecting these changes. Bacterial genera Azoarcus and Pseudomonas were among the dominant classified genera in the biofilter. Canonical correspondence analysis (CCA) and correlation analysis revealed that the genera Brevundimonas, Hydrogenophaga, and Achromobacter may play important roles in styrene degradation under increasing styrene concentrations. No significant correlations (P > 0.05) could be detected between biofilter operational/functional parameters and biodiversity measurements, although biological heterogeneity within biofilms and/or technical variability within pyrosequencing may have considerably affected these results. Percentages of selected bacterial taxonomic groups detected by fluorescence in situ hybridization (FISH) were compared to results from pyrosequencing in order to assess the effectiveness and limitations of each method for identifying each microbial taxon. Comparison of results revealed discrepancies between the two methods in the detected percentages of numerous taxonomic groups. Biases and technical limitations of both FISH and pyrosequencing, such as the binding of FISH probes to non-target microbial groups and lack of classification of sequences for defined taxonomic groups from pyrosequencing, may partially explain some differences between the two methods.


Assuntos
Bactérias/classificação , Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Biota , Filtração/métodos , Estireno/metabolismo , Bactérias/crescimento & desenvolvimento , Biotransformação , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Fatores de Tempo
8.
Mar Genomics ; 3(1): 51-62, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21798197

RESUMO

Projected elevation of seawater temperatures poses a threat to the reproductive success of Caribbean reef-building corals that have planktonic development during the warmest months of the year. This study examined the transcriptomic changes that occurred during embryonic and larval development of the elkhorn coral, Acropora palmata, at a non-stressful temperature (28°C) and further assessed the effects of two elevated temperatures (30°C and 31.5°C) on these expression patterns. Using cDNA microarrays, we compared expression levels of 2051 genes from early embryos and larvae at multiple developmental stages (including pre-blastula, blastula, gastrula, and planula stages) at each of the three temperatures. At 12h post-fertilization in 28°C treatments, genes involved in cell replication/cell division and transcription were up-regulated in A. palmata embryos, followed by a reduction in expression of these genes during later growth stages. From 24.5 to 131h post-fertilization at 28°C, A. palmata altered its transcriptome by up-regulating genes involved in protein synthesis and metabolism. Temperatures of 30°C and 31.5°C caused major changes to the A. palmata embryonic transcriptomes, particularly in the samples from 24.5hpf post-fertilization, characterized by down-regulation of numerous genes involved in cell replication/cell division, metabolism, cytoskeleton, and transcription, while heat shock genes were up-regulated compared to 28°C treatments. These results suggest that increased temperature may cause a breakdown in proper gene expression during development in A. palmata by down-regulation of genes involved in essential cellular processes, which may lead to the abnormal development and reduced survivorship documented in other studies.


Assuntos
Antozoários/embriologia , Antozoários/crescimento & desenvolvimento , Antozoários/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Resposta ao Choque Térmico/genética , Temperatura , Animais , Antozoários/genética , Biologia Computacional , Regulação da Expressão Gênica no Desenvolvimento/genética , Larva/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Porto Rico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...