Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transl Anim Sci ; 1(1): 60-68, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32064460

RESUMO

Live yeast probiotics and yeast cell wall components (paraprobiotics) may serve as an alternative to the use of antibiotics in prevention and treatment of infections caused by pathogenic bacteria. Probiotics and paraprobiotics can bind directly to pathogens, which limits binding of the pathogens to the intestinal cells and also facilitates removal from the host. However, knowledge of bacterial binding, specificity, and/or capability is limited with regard to probiotics or paraprobiotics. The goal of this study was to characterize the qualitative and quantitative nature of two Saccharomyces cerevisiae probiotics and three S. cerevisiae paraprobiotics to adhere to thirteen different pathogenic bacteria using scanning electron miscroscopy and filtration assays. On average, the yeast probiotics (LYA and LYB) exhibited overall greater (P < 0.05) adhesion to the pathogenic bacteria tested (41% and 34%) in comparison to paraprobiotics (23%, 21%, and 22%), though variations were observed between pathogens tested. The ability of Salmonella and Listeria to utilize components of the yeast as a nutrient source was also tested. Bacteria were cultured in media with limited carbon and supplemented with cell free extracts of the probiotics and paraprobiotics. Salmonella exhibited growth, indicating these pathogens could utilize the yeast lysates as a carbon source. Listeria monocytogenes had limited growth in only one of the lysates tested. Together, these data indicate that the interaction between probiotics and paraprobiotics occurs in a strain dependent mechanism. Administration of probiotics and paraprobiotics as therapeutics therefore needs to be specific against the bacterial pathogen target.

2.
J Proteome Res ; 13(4): 1896-904, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24564473

RESUMO

Listeria monocytogenes is a Gram-positive, foodborne pathogen responsible for approximately 28% of all food-related deaths each year in the United States. L. monocytogenes infections are linked to the consumption of minimally processed ready-to-eat (RTE) products such as cheese, deli meats, and cold-smoked finfish products. L. monocytogenes is resistant to stresses commonly encountered in the food-processing environment, including low pH, high salinity, oxygen content, and various temperatures. The purpose of this study was to determine if cells habituated at low temperatures would result in cross-protective effects against osmotic stress. We found that cells exposed to refrigerated temperatures prior to a mild salt stress treatment had increased survival in NaCl concentrations of 3%. Additionally, the longer the cells were pre-exposed to cold temperatures, the greater the increase in survival in 3% NaCl. A proteomics analysis was performed in triplicate in order to elucidate mechanisms involved in cold-stress induced cross protection against osmotic stress. Proteins involved in maintenance of the cell wall and cellular processes, such as penicillin binding proteins and osmolyte transporters, and processes involving amino acid metabolism, such as osmolyte synthesis, transport, and lipid biosynthesis, had the greatest increase in expression when cells were exposed to cold temperatures prior to salt. By gaining a better understanding of how this pathogen adapts physiologically to various environmental conditions, improvements can be made in detection and mitigation strategies.


Assuntos
Proteínas de Bactérias/análise , Listeria monocytogenes/fisiologia , Pressão Osmótica/fisiologia , Proteoma/análise , Estresse Fisiológico/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Temperatura Baixa , Listeria monocytogenes/química , Listeria monocytogenes/metabolismo , Redes e Vias Metabólicas , Proteoma/química , Proteoma/metabolismo , Proteômica , Cloreto de Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA