Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 19(23): 8978-8986, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38011829

RESUMO

To sample rare events, dissipation-corrected targeted molecular dynamics (dcTMD) applies a constant velocity constraint along a one-dimensional reaction coordinate s, which drives an atomistic system from an initial state into a target state. Employing a cumulant approximation of Jarzynski's identity, the free energy ΔG(s) is calculated from the mean external work and dissipated work of the process. By calculating the friction coefficient Γ(s) from the dissipated work, in a second step, the equilibrium dynamics of the process can be studied by propagating a Langevin equation. While so far dcTMD has been mostly applied to study the unbinding of protein-ligand complexes, here its applicability to rare conformational transitions within a protein and the prediction of their kinetics are investigated. As this typically requires the introduction of multiple collective variables {xj} = x, a theoretical framework is outlined to calculate the associated free energy ΔG(x) and friction Γ(x) from dcTMD simulations along coordinate s. Adopting the α-ß transition of alanine dipeptide as well as the open-closed transition of T4 lysozyme as representative examples, the virtues and shortcomings of dcTMD to predict protein conformational transitions and the related kinetics are studied.


Assuntos
Simulação de Dinâmica Molecular , Termodinâmica , Conformação Proteica , Entropia , Cinética
2.
J Chem Phys ; 158(12): 124106, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37003731

RESUMO

Protein-ligand (un)binding simulations are a recent focus of biased molecular dynamics simulations. Such binding and unbinding can occur via different pathways in and out of a binding site. Here, we present a theoretical framework on how to compute kinetics along separate paths and on how to combine the path-specific rates into global binding and unbinding rates for comparison with experimental results. Using dissipation-corrected targeted molecular dynamics in combination with temperature-boosted Langevin equation simulations [S. Wolf et al., Nat. Commun. 11, 2918 (2020)] applied to a two-dimensional model and the trypsin-benzamidine complex as test systems, we assess the robustness of the procedure and discuss the aspects of its practical applicability to predict multisecond kinetics of complex biomolecular systems.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Ligantes , Proteínas/química , Sítios de Ligação , Ligação Proteica , Cinética
3.
J Mol Biol ; 434(17): 167679, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35690098

RESUMO

Allosteric communication between distant protein sites represents a key mechanism of biomolecular regulation and signal transduction. Compared to other processes such as protein folding, however, the dynamical evolution of allosteric transitions is still not well understood. As an example of allosteric coupling between distant protein regions, we consider the global open-closed motion of the two domains of T4 lysozyme, which is triggered by local motion in the hinge region. Combining extensive molecular dynamics simulations with a correlation analysis of interresidue contacts, we identify a network of interresidue distances that move in a concerted manner. The cooperative process originates from a cogwheel-like motion of the hydrophobic core in the hinge region, which constitutes an evolutionary conserved and flexible transmission network. Through rigid contacts and the protein backbone, the small local changes of the hydrophobic core are passed on to the distant terminal domains and lead to the emergence of a rare global conformational transition. As in an Ising-type model, the cooperativity of the allosteric transition can be explained via the interaction of local fluctuations.


Assuntos
Regulação Alostérica , Simulação de Dinâmica Molecular , Proteínas , Conformação Proteica , Dobramento de Proteína , Proteínas/química
4.
J Chem Theory Comput ; 18(5): 2816-2825, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35442659

RESUMO

The friction coefficient of fluids may become a function of the velocity at increased external driving. This non-Newtonian behavior is of general theoretical interest and of great practical importance, for example, for the design of lubricants. Although the effect has been observed in large-scale atomistic simulations of bulk liquids, its theoretical formulation and microscopic origin are not well understood. Here, we use dissipation-corrected targeted molecular dynamics, which pulls apart two tagged liquid molecules in the presence of surrounding molecules, and analyze this nonequilibrium process via a generalized Langevin equation. The approach is based on a second-order cumulant expansion of Jarzynski's identity, which is shown to be valid for fluids and therefore allows for an exact computation of the friction profile as well of the underlying memory kernel. We show that velocity-dependent friction in fluids results from an intricate interplay of near-order structural effects and the non-Markovian behavior of the friction memory kernel. For complex fluids such as the model lubricant C40H82, the memory kernel exhibits a stretched-exponential long-time decay, which reflects the multitude of timescales of the system.


Assuntos
Simulação de Dinâmica Molecular , Fricção
5.
Proc Natl Acad Sci U S A ; 117(42): 26031-26039, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33020277

RESUMO

While allostery is of paramount importance for protein regulation, the underlying dynamical process of ligand (un)binding at one site, resulting time evolution of the protein structure, and change of the binding affinity at a remote site are not well understood. Here the ligand-induced conformational transition in a widely studied model system of allostery, the PDZ2 domain, is investigated by transient infrared spectroscopy accompanied by molecular dynamics simulations. To this end, an azobenzene-derived photoswitch is linked to a peptide ligand in a way that its binding affinity to the PDZ2 domain changes upon switching, thus initiating an allosteric transition in the PDZ2 domain protein. The subsequent response of the protein, covering four decades of time, ranging from ∼1 ns to ∼µs, can be rationalized by a remodeling of its rugged free-energy landscape, with very subtle shifts in the populations of a small number of structurally well-defined states. It is proposed that structurally and dynamically driven allostery, often discussed as limiting scenarios of allosteric communication, actually go hand-in-hand, allowing the protein to adapt its free-energy landscape to incoming signals.


Assuntos
Simulação de Dinâmica Molecular , Domínios PDZ , Conformação Proteica , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/metabolismo , Regulação Alostérica , Sítios de Ligação , Entropia , Humanos , Ligantes , Mutação , Ligação Proteica , Proteínas Tirosina Fosfatases/genética , Espectrofotometria Infravermelho
6.
J Chem Phys ; 150(20): 204110, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31153204

RESUMO

Principal component analysis (PCA) represents a standard approach to identify collective variables {xi} = x, which can be used to construct the free energy landscape ΔG(x) of a molecular system. While PCA is routinely applied to equilibrium molecular dynamics (MD) simulations, it is less obvious as to how to extend the approach to nonequilibrium simulation techniques. This includes, e.g., the definition of the statistical averages employed in PCA as well as the relation between the equilibrium free energy landscape ΔG(x) and the energy landscapes ΔG(x) obtained from nonequilibrium MD. As an example for a nonequilibrium method, "targeted MD" is considered which employs a moving distance constraint to enforce rare transitions along some biasing coordinate s. The introduced bias can be described by a weighting function P(s), which provides a direct relation between equilibrium and nonequilibrium data, and thus establishes a well-defined way to perform PCA on nonequilibrium data. While the resulting distribution P(x) and energy ΔG∝lnP will not reflect the equilibrium state of the system, the nonequilibrium energy landscape ΔG(x) may directly reveal the molecular reaction mechanism. Applied to targeted MD simulations of the unfolding of decaalanine, for example, a PCA performed on backbone dihedral angles is shown to discriminate several unfolding pathways. Although the formulation is in principle exact, its practical use depends critically on the choice of the biasing coordinate s, which should account for a naturally occurring motion between two well-defined end-states of the system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...