Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1850(2): 255-62, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25445710

RESUMO

BACKGROUND: Triatoma infestans is the main vector of Chagas'disease in Southern Cone countries. In triatomines, symptoms suggesting neurotoxicity were observed after treatment with Jaburetox (Jbtx), the entomotoxic peptide obtained from jackbean urease. Here, we study its effect in the central nervous system (CNS) of this species. METHODS: Immunohistochemistry, Western blots, immunoprecipitation, two-dimensional electrophoresis, tandem mass spectrometry and enzymatic assays were performed. RESULTS: Anti-Jbtx antibody labeled somata of the antennal lobe only in Jbtx-treated insects. Western blot assays of nervous tissue using the same antibody reacted with a 61kDa protein band only in peptide-injected insects. Combination of immunoprecipitation, two-dimensional electrophoresis and tandem mass spectrometry identified UDP-N-acetylglucosamine pyrophosphorylase (UDP-GlcNAcP) as a molecular target for Jbtx. The activity of UDP-GlcNAcP increased significantly in the CNS of Jbtx-treated insects. The effect of Jbtx on the activity of nitric oxide synthase (NOS) and NO production was investigated as NO is a recognized messenger molecule in the CNS of T. infestans. NOS activity and NO levels decreased significantly in CNS homogenates of Jbtx-treated insects. CONCLUSIONS: UDP-GlcNAcP is a molecular target of Jbtx. Jbtx impaired the activity of T. infestans nitrergic system, which may be related with early behavioral effects. GENERAL SIGNIFICANCE: We report that the CNS of Triatoma infestans is a target for the entomotoxic peptide and propose that a specific area of the brain is involved. Besides potentially providing tools for control strategies of Chagas' disease vectors our data may be relevant in various fields of research as insect physiology, neurobiology and protein function.


Assuntos
Sistema Nervoso Central/enzimologia , Inibidores Enzimáticos/farmacologia , Nucleotidiltransferases/antagonistas & inibidores , Peptídeos/farmacologia , Proteínas de Plantas/farmacologia , Triatoma/enzimologia , Urease/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Inibidores Enzimáticos/química , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Nucleotidiltransferases/metabolismo , Peptídeos/química , Proteínas de Plantas/química , Urease/química
2.
Peptides ; 38(1): 22-32, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22922160

RESUMO

Ureases (EC 3.5.1.5) are metalloenzymes that hydrolyze urea into ammonia and CO(2). These proteins have insecticidal and fungicidal effects not related to their enzymatic activity. The insecticidal activity of urease is mostly dependent on the release of internal peptides after hydrolysis by insect digestive cathepsins. Jaburetox is a recombinant version of one of these peptides, expressed in Escherichia coli. The antifungal activity of ureases in filamentous fungi occurs at submicromolar doses, with damage to the cell membranes. Here we evaluated the toxic effect of Canavalia ensiformis urease (JBU) on different yeast species and carried out studies aiming to identify antifungal domain(s) of JBU. Data showed that toxicity of JBU varied according to the genus and species of yeasts, causing inhibition of proliferation, induction of morphological alterations with formation of pseudohyphae, changes in the transport of H(+) and carbohydrate metabolism, and permeabilization of membranes, which eventually lead to cell death. Hydrolysis of JBU with papain resulted in fungitoxic peptides (~10 kDa), which analyzed by mass spectrometry, revealed the presence of a fragment containing the N-terminal sequence of the entomotoxic peptide Jaburetox. Tests with Jaburetox on yeasts and filamentous fungi indicated a fungitoxic activity similar to ureases. Plant ureases, such as JBU, and its derived peptides, may represent a new alternative to control medically important mycoses as well as phytopathogenic fungi, especially considering their potent activity in the range of 10(-6)-10(-7)M.


Assuntos
Antifúngicos/farmacologia , Canavalia/química , Proteínas de Plantas/farmacologia , Urease/farmacologia , Sequência de Aminoácidos , Metabolismo dos Carboidratos/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Fungos/efeitos dos fármacos , Glucose/metabolismo , Hidrólise , Dados de Sequência Molecular , Papaína/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Estrutura Terciária de Proteína , Urease/química , Leveduras/efeitos dos fármacos
3.
Peptides ; 32(3): 461-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21029760

RESUMO

The distribution of corazonin in the central nervous system of the heteropteran insect Triatoma infestans was studied by immunohistochemistry. The presence of corazonin isoforms was investigated using MALDI-TOF mass spectrometry in samples containing the brain, the subesophageal ganglion, the corpora cardiaca-corpus allatum complex and the anterior part of the aorta. Several groups of immunopositive perikarya were detected in the brain, the subesophageal ganglion and the thoracic ganglia. Regarding the brain, three clusters were observed in the protocerebrum. One of these clusters was formed by somata located near the entrance of the ocellar nerves whose fibers supplied the aorta and the corpora cardiaca. The remaining groups of the protocerebrum were located in the lateral soma cortex and at the boundary of the protocerebrum with the optic lobe. The optic lobe housed immunoreactive somata in the medial soma layer of the lobula and at the level of the first optic chiasma. The neuropils of the deutocerebrum and the tritocerebrum were immunostained, but no immunoreactive perikarya were detected. In the subesophageal ganglion, immunostained somata were found in the soma layers of the mandibular and labial neuromeres, whereas in the mesothoracic ganglionic mass, they were observed in the mesothoracic, metathoracic and abdominal neuromeres. Immunostained neurites were also found in the esophageal wall. The distribution pattern of corazonin like immunoreactivity in the central nervous system of this species suggests that corazonin may act as a neurohormone. Mass spectrometric analysis revealed that [Arg(7)]-corazonin was the only isoform of the neuropeptide present in T. infestans tissue samples.


Assuntos
Sistema Nervoso Central/metabolismo , Proteínas de Insetos/metabolismo , Neuropeptídeos/metabolismo , Triatoma/metabolismo , Animais , Imuno-Histoquímica , Proteínas de Insetos/química , Espectrometria de Massas , Neuropeptídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...