Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurogenetics ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967831

RESUMO

The debate surrounding nature versus nurture remains a central question in neuroscience, psychology, and in psychiatry, holding implications for both aging processes and the etiology of mental illness. Epigenetics can serve as a bridge between genetic predisposition and environmental influences, thus offering a potential avenue for addressing these questions. Epigenetic clocks, in particular, offer a theoretical framework for measuring biological age based on DNA methylation signatures, enabling the identification of disparities between biological and chronological age. This structured review seeks to consolidate current knowledge regarding the relationship between mental disorders and epigenetic age within the brain. Through a comprehensive literature search encompassing databases such as EBSCO, PubMed, and ClinicalTrials.gov, relevant studies were identified and analyzed. Studies that met inclusion criteria were scrutinized, focusing on those with large sample sizes, analyses of both brain tissue and blood samples, investigation of frontal cortex markers, and a specific emphasis on schizophrenia and depressive disorders. Our review revealed a paucity of significant findings, yet notable insights emerged from studies meeting specific criteria. Studies characterized by extensive sample sizes, analysis of brain tissue and blood samples, assessment of frontal cortex markers, and a focus on schizophrenia and depressive disorders yielded particularly noteworthy results. Despite the limited number of significant findings, these studies shed light on the complex interplay between epigenetic aging and mental illness. While the current body of literature on epigenetic aging in mental disorders presents limited significant findings, it underscores the importance of further research in this area. Future studies should prioritize large sample sizes, comprehensive analyses of brain tissue and blood samples, exploration of specific brain regions such as the frontal cortex, and a focus on key mental disorders. Such endeavors will contribute to a deeper understanding of the relationship between epigenetic aging and mental illness, potentially informing novel diagnostic and therapeutic approaches.

2.
Head Face Med ; 20(1): 36, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877506

RESUMO

INTRODUCTION: Amelogenesis imperfecta (AI) is a genetically determined, non-syndromic enamel dysplasia that may manifest as hypoplasia, hypomaturation, or hypocalcification and can commonly be classified into four primary groups. In this retrospective analysis, specific orofacial characteristics are described and associated with each of the AI types based on a patient cohort from Witten/Herdecke University, Germany. METHODS: Data from 19 patients (ten male and nine female, mean age 12.27 ± 4.06 years) with AI who presented at the Department of Orthodontics between July 2011 and December 2023 were analyzed. Baseline skeletal and dental conditions were assessed, including the presence of hypodontia, displacements, and taurodontism. AI was classified into classes I-IV based on phenotype. Treatment needs were evaluated according to the main findings following the German KIG classification, while the radiological enamel situation was determined using panoramic radiographs. RESULTS: An approximately equal distribution between classes II and III was found and a slight inclination toward a dolichofacial configuration (ΔML-NSL: 5.07 ± 9.23°, ΔML-NL: 4.24 ± 8.04°). Regarding orthodontic findings, disturbance in tooth eruption as well as open bite were the most prevalent issues (both 36.8%, n = 7). The most common AI classes were type I and II, which show an almost even distribution about the skeletal classes in sagittal dimension, while dolichofacial configuration was found most frequently in vertical dimension. CONCLUSION: Both clinical and radiological orthodontic findings in context with AI are subject to extensive distribution. It seems that no specific orofacial findings can be confirmed in association with AI with regard to the common simple classes I-IV. It may be more appropriate to differentiate the many subtypes according to their genetic aspects to identify possible associated orthodontic findings.


Assuntos
Amelogênese Imperfeita , Humanos , Amelogênese Imperfeita/terapia , Amelogênese Imperfeita/genética , Masculino , Feminino , Estudos Retrospectivos , Criança , Adolescente , Alemanha , Radiografia Panorâmica , Ortodontia Corretiva/métodos , Má Oclusão/terapia
3.
Am J Clin Nutr ; 117(6): 1195-1210, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36963568

RESUMO

BACKGROUND: Human breast milk has a high microRNA (miRNA) content. It remains unknown whether and how milk miRNAs might affect intestinal gene regulation and homeostasis of the developing microbiome after initiating enteral nutrition. However, this requires that relevant milk miRNA amounts survive the gastrointestinal (GI) passage, are taken up by cells, and become available to the RNA interference machinery. It seems important to dissect the fate of these miRNAs after oral ingestion and GI passage. OBJECTIVES: Our goal was to analyze the potential transmissibility of milk miRNAs via the gastrointestinal system in neonate humans and a porcine model in vivo to contribute to the discussion of whether milk miRNAs could influence gene regulation in neonates and thus might vertically transmit developmental relevant signals. METHODS: We performed cross-species profiling of miRNAs via deep sequencing and utilized dietary xenobiotic taxon-specific milk miRNA (xenomiRs) as tracers in human and porcine neonates, followed by functional studies in primary human fetal intestinal epithelial cells using adenovirus-type 5-mediated miRNA gene transfer. RESULTS: Mammals share many milk miRNAs yet exhibit taxon-specific miRNA fingerprints. We traced bovine-specific miRNAs from formula nutrition in human preterm stool and 9 d after the onset of enteral feeding in intestinal cells (ICs) of preterm piglets. Thereafter, several xenomiRs accumulated in the ICs. Moreover, a few hours after introducing enteral feeding in preterm piglets with supplemented reporter miRNAs (cel-miR-39-5p/-3p), we observed their enrichment in blood serum and in argonaute RISC catalytic component 2 (AGO2)-immunocomplexes from intestinal biopsies. CONCLUSIONS: Milk-derived miRNAs survived GI passage in human and porcine neonates. Bovine-specific miRNAs accumulated in ICs of preterm piglets after enteral feeding with bovine colostrum/formula. In piglets, colostrum supplementation with cel-miR-39-5p/-3p resulted in increased blood concentrations of cel-miR-39-3p and argonaute RISC catalytic component 2 (AGO2) loading in ICs. This suggests the possibility of vertical transmission of miRNA signaling from milk through the neonatal digestive tract.


Assuntos
Enterocolite Necrosante , MicroRNAs , Animais , Bovinos , Feminino , Humanos , Animais Recém-Nascidos , Células Epiteliais/patologia , Trato Gastrointestinal , MicroRNAs/genética , Leite , Suínos , Leite Humano
4.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674956

RESUMO

In contrast to bacteria, microbiome analyses often neglect archaea, but also eukaryotes. This is partly because they are difficult to culture due to their demanding growth requirements, or some even have to be classified as uncultured microorganisms. Consequently, little is known about the relevance of archaea in human health and diseases. Contemporary broad availability and spread of next generation sequencing techniques now enable a stronger focus on such microorganisms, whose cultivation is difficult. However, due to the enormous evolutionary distances between bacteria, archaea and eukaryotes, the implementation of sequencing strategies for smaller laboratory scales needs to be refined to achieve as a holistic view on the microbiome as possible. Here, we present a technical approach that enables simultaneous analyses of archaeal, bacterial and eukaryotic microbial communities to study their roles in development and courses of respiratory disorders. We thus applied combinatorial 16S-/18S-rDNA sequencing strategies for sequencing-library preparation. Considering the lower total microbiota density of airway surfaces, when compared with gut microbiota, we optimized the DNA purification workflow from nasopharyngeal swab specimens. As a result, we provide a protocol that allows the efficient combination of bacterial, archaeal, and eukaryotic libraries for nanopore-sequencing using Oxford Nanopore Technologies MinION devices and subsequent phylogenetic analyses. In a pilot study, this workflow allowed the identification of some environmental archaea, which were not correlated with airway microbial communities before. Moreover, we assessed the protocol's broader applicability using a set of human stool samples. We conclude that the proposed protocol provides a versatile and adaptable tool for combinatorial studies on bacterial, archaeal, and eukaryotic microbiomes on a small laboratory scale.


Assuntos
Microbiota , Nanoporos , Humanos , Archaea/genética , Eucariotos/genética , Filogenia , DNA Ribossômico , Projetos Piloto , Microbiota/genética , Bactérias , Nasofaringe , RNA Ribossômico 16S/genética
5.
Viruses ; 14(9)2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36146759

RESUMO

Only two decades after discovering miRNAs, our understanding of the functional effects of deregulated miRNAs in the development of diseases, particularly cancer, has been rapidly evolving. These observations and functional studies provide the basis for developing miRNA-based diagnostic markers or new therapeutic strategies. Adenoviral (Ad) vectors belong to the most frequently used vector types in gene therapy and are suitable for strong short-term transgene expression in a variety of cells. Here, we report the set-up and functionality of an Ad-based miRNA vector platform that can be employed to deliver and express a high level of miRNAs efficiently. This vector platform allows fast and efficient vector production to high titers and the expression of pri-miRNA precursors under the control of a polymerase II promoter. In contrast to non-viral miRNA delivery systems, this Ad-based miRNA vector platform allows accurate dosing of the delivered miRNAs. Using a two-vector model, we showed that Ad-driven miRNA expression was sufficient in down-regulating the expression of an overexpressed and highly stable protein. Additional data corroborated the downregulation of multiple endogenous target RNAs using the system presented here. Additionally, we report some unanticipated synergistic effects on the transduction efficiencies in vitro when cells were consecutively transduced with two different Ad-vectors. This effect might be taken into consideration for protocols using two or more different Ad vectors simultaneously.


Assuntos
MicroRNAs , Adenoviridae/genética , Adenoviridae/metabolismo , Terapia Genética/métodos , Vetores Genéticos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Transgenes
6.
Cells ; 11(8)2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35455967

RESUMO

Bacteria, as well as eukaryotes, principally fungi, of the upper respiratory tract play key roles in the etiopathogenesis of respiratory diseases, whereas the potential role of archaea remains poorly understood. In this review, we discuss the contribution of all three domains of cellular life to human naso- and oropharyngeal microbiomes, i.e., bacterial microbiota, eukaryotes (mostly fungi), as well as the archaeome and their relation to respiratory and atopic disorders in infancy and adolescence. With this review, we aim to summarize state-of-the-art contributions to the field published in the last decade. In particular, we intend to build bridges between basic and clinical science.


Assuntos
Asma , Microbiota , Micobioma , Archaea , Bactérias , Criança , Eucariotos , Fungos , Humanos
7.
Microorganisms ; 9(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34946199

RESUMO

The scale of the ongoing SARS-CoV-2 pandemic warrants the urgent establishment of a global decentralized surveillance system to recognize local outbreaks and the emergence of novel variants of concern. Among available deep-sequencing technologies, nanopore-sequencing could be an important cornerstone, as it is mobile, scalable, and cost-effective. Therefore, streamlined nanopore-sequencing protocols need to be developed and optimized for SARS-CoV-2 variants identification. We adapted and simplified existing workflows using the 'midnight' 1200 bp amplicon split primer sets for PCR, which produce tiled overlapping amplicons covering almost the entire SARS-CoV-2 genome. Subsequently, we applied Oxford Nanopore Rapid Barcoding and the portable MinION Mk1C sequencer combined with the interARTIC bioinformatics pipeline. We tested a simplified and less time-consuming workflow using SARS-CoV-2-positive specimens from clinical routine and identified the CT value as a useful pre-analytical parameter, which may help to decrease sequencing failures rates. Complete pipeline duration was approx. 7 h for one specimen and approx. 11 h for 12 multiplexed barcoded specimens. The adapted protocol contains fewer processing steps and can be completely conducted within one working day. Diagnostic CT values deduced from qPCR standardization experiments can act as principal criteria for specimen selection. As a guideline, SARS-CoV-2 genome copy numbers lower than 4 × 106 were associated with a coverage threshold below 20-fold and incompletely assembled SARS-CoV-2 genomes. Thus, based on the described thermocycler/chemistry combination, we recommend CT values of ~26 or lower to achieve full and high-quality SARS-CoV-2 (+)RNA genome coverage.

8.
Mol Cell Pediatr ; 8(1): 4, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33893880

RESUMO

BACKGROUND: Reverse transcription of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (+)RNA genome and subgenomic RNAs (sgRNAs) and subsequent quantitative polymerase chain reaction (RT-qPCR) is the reliable diagnostic gold standard for COVID-19 diagnosis and the identification of potential spreaders. Apart from clinical relevance and containment, for specific questions, it might be of interest to (re)investigate cases with low SARS-CoV-2 load, where RT-qPCR alone can deliver conflicting results, even though these cases might neither be clinically relevant nor significant for containment measures, because they might probably not be infectious. In order to expand the diagnostic bandwidth for non-routine questions, particularly for the reliable discrimination between negative and false-negative specimens associated with high CT values, we combined the RT-qPCR workflow with subsequent pyrosequencing of a S-gene amplicon. This expansion can help to confirm SARS-CoV-2 infections without the demand of confirmative antibody testing, which requires to summon patients again for blood sampling few to several weeks after symptom onset. RESULTS: We successfully established a combined RT-qPCR and S-gene pyrosequencing method which can be optionally exploited after routine diagnostics. This allows a reliable interpretation of RT-qPCR results in specimens with relatively low viral loads and close to the detection limits of qPCR. After laboratory implementation, we tested the combined method in a large pediatric cohort from two German medical centers (n=769). Pyrosequencing after RT-qPCR enabled us to uncover 5 previously unrecognized cases of pediatric SARS-CoV-2-associated diseases, mainly exhibiting mild and heterogeneous presentation-apart from a single case of multisystem inflammatory syndrome in children (MIS-C) associated with SARS-CoV-2, who was hospitalized in the course of the study. CONCLUSIONS: The proposed protocol allows a specific and sensitive confirmation of SARS-CoV-2 infections close to the detection limits of RT-qPCR. The tested biotinylated primers do not negatively affect the RT-qPCR pipeline and thus can be optionally applied to enable deeper inspection of RT-qPCR results by subsequent pyrosequencing. Moreover, due to the incremental transmission of SARS-CoV-2 variants of concern, we note that the used strategy can uncover (Spike) P681H allowing the pre-selection of SARS-CoV-2 B.1.1.7 candidate specimens for deep sequencing.

9.
Front Allergy ; 2: 667562, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35386977

RESUMO

Although the nose, as a gateway for organism-environment interactions, may have a key role in asthmatic exacerbation, the rhinobiome of exacerbated children with asthma was widely neglected to date. The aim of this study is to understand the microbiome, the microbial immunology, and the proteome of exacerbated children and adolescents with wheeze and asthma. Considering that a certain proportion of wheezers may show a progression to asthma, the comparison of both groups provides important information regarding clinical and phenotype stratification. Thus, deep nasopharyngeal swab specimens, nasal epithelial spheroid (NAEsp) cultures, and blood samples of acute exacerbated wheezers (WH), asthmatics (AB), and healthy controls (HC) were used for culture (n = 146), 16 S-rRNA gene amplicon sequencing (n = 64), and proteomic and cytokine analyses. Interestingly, Proteobacteria were over-represented in WH, whereas Firmicutes and Bacteroidetes were associated with AB. In contrast, Actinobacteria commonly colonized HCs. Moreover, Staphylococcaceae, Enterobacteriaceae, Burkholderiaceae, Xanthobacteraceae, and Sphingomonadaceae were significantly more abundant in AB compared to WH and HC. The α-diversity analyses demonstrated an increase of bacterial abundance levels in atopic AB and a decrease in WH samples. Microbiome profiles of atopic WH differed significantly from atopic AB, whereby atopic samples of WH were more homogeneous than those of non-atopic subjects. The NAEsp bacterial exposure experiments provided a disrupted epithelial cell integrity, a cytokine release, and cohort-specific proteomic differences especially for Moraxella catarrhalis cultures. This comprehensive dataset contributes to a deeper insight into the poorly understood plasticity of the nasal microbiota, and, in particular, may enforce our understanding in the pathogenesis of asthma exacerbation in childhood.

10.
Front Pediatr ; 8: 574462, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324591

RESUMO

In summer 2017, the World Health Organization published 10 facts on asthma, which is known as a major non-communicable disease of high clinical and scientific importance with currently several hundred million people-with many children among them-suffering from air passages inflammation and narrowing. Importantly, the World Health Organization sees asthma as being underdiagnosed and undertreated. Consequently, much more efforts in clinical disease management and research need to be spent on reducing the asthma-related health burden. Particularly, for young approximately 6 months aged patients presenting recurrent bronchitic respiratory symptoms, many parents anxiously ask the doctors for risk prognosis for their children's future life. Therefore, we urgently need to reevaluate if the current diagnostic and treatment measures are in concordance with our yet incomplete knowledge of pathomechanisms on exacerbation. To contribute to this increasing concern worldwide, we established a multicentric pediatric exacerbation study network, still recruiting acute exacerbated asthmatics (children >6 years) and preschool asthmatics/wheezers (children <6 years) since winter 2018 in Germany. The current study that has a currently population comprising 176 study participants aims to discover novel holistic entry points for achieving a better understanding of the poorly understood plasticity of involved molecular pathways and to define biomarkers enabling improved diagnostics and therapeutics. With this study description, we want to present the study design, population, and few ongoing experiments for novel biomarker research. Clinical Trial Registration: German Clinical Trials Register (Deutsches Register für Klinische Studien, DRKS): DRKS00015738.

12.
Genes (Basel) ; 10(11)2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31752243

RESUMO

In the ciliate Stylonychia, somatic macronuclei differentiate from germline micronuclei during sexual reproduction, accompanied by developmental sequence reduction. Concomitantly, over 95% of micronuclear sequences adopt a heterochromatin structure characterized by the histone variant H3.4 and H3K27me3. RNAi-related genes and histone variants dominate the list of developmentally expressed genes. Simultaneously, 27nt-ncRNAs that match sequences retained in new macronuclei are synthesized and bound by PIWI1. Recently, we proposed a mechanistic model for 'RNA-induced DNA replication interference' (RIRI): during polytene chromosome formation PIWI1/27nt-RNA-complexes target macronucleus-destined sequences (MDS) by base-pairing and temporarily cause locally stalled replication. At polytene chromosomal segments with ongoing replication, H3.4K27me3-nucleosomes become selectively deposited, thus dictating the prospective heterochromatin structure of these areas. Consequently, these micronucleus-specific sequences become degraded, whereas 27nt-RNA-covered sites remain protected. However, the biogenesis of the 27nt-RNAs remains unclear. It was proposed earlier that in stichotrichous ciliates 27nt-RNA precursors could derive from telomere-primed bidirectional transcription of nanochromosomes and subsequent Dicer-like (DCL) activity. As a minimalistic explanation, we propose here that the 27nt-RNA precursor could rather be mRNA or pre-mRNA and that the transition of coding RNA from parental macronuclei to non-coding RNAs, which act in premature developing macronuclei, could involve RNA-dependent RNA polymerase (RDRP) activity creating dsRNA intermediates prior to a DCL-dependent pathway. Interestingly, by such mechanism the partition of a parental somatic genome and possibly also the specific nanochromosome copy numbers could be vertically transmitted to the differentiating nuclei of the offspring.


Assuntos
Cilióforos/genética , Regulação da Expressão Gênica no Desenvolvimento , Micronúcleo Germinativo/genética , RNA Mensageiro/biossíntese , RNA Nuclear Pequeno/biossíntese , Replicação do DNA , Genoma de Protozoário/genética , Histonas/genética , Histonas/metabolismo , Micronúcleo Germinativo/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Interferência de RNA , Precursores de RNA/biossíntese , Precursores de RNA/genética , RNA Mensageiro/genética , RNA Nuclear Pequeno/genética , Telômero/genética , Telômero/metabolismo
13.
Epigenetics Chromatin ; 11(1): 34, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29933745

RESUMO

BACKGROUND: In hepatocyte nuclei, hepatitis B virus (HBV) genomes occur episomally as covalently closed circular DNA (cccDNA). The HBV X protein (HBx) is required to initiate and maintain HBV replication. The functional nuclear localization of cccDNA and HBx remains unexplored. RESULTS: To identify virus-host genome interactions and the underlying nuclear landscape for the first time, we combined circular chromosome conformation capture (4C) with RNA-seq and ChIP-seq. Moreover, we studied HBx-binding to HBV episomes. In HBV-positive HepaRG hepatocytes, we observed preferential association of HBV episomes and HBx with actively transcribed nuclear domains on the host genome correlating in size with constrained topological units of chromatin. Interestingly, HBx alone occupied transcribed chromatin domains. Silencing of native HBx caused reduced episomal HBV stability. CONCLUSIONS: As part of the HBV episome, HBx might stabilize HBV episomal nuclear localization. Our observations may contribute to the understanding of long-term episomal stability and the facilitation of viral persistence. The exact mechanism by which HBx contributes to HBV nuclear persistence warrants further investigations.


Assuntos
Núcleo Celular/genética , Vírus da Hepatite B/genética , Hepatócitos/virologia , Plasmídeos/metabolismo , Transativadores/metabolismo , Sítios de Ligação , Linhagem Celular , Núcleo Celular/metabolismo , Imunoprecipitação da Cromatina , DNA Viral/metabolismo , Células Hep G2 , Vírus da Hepatite B/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Domínios Proteicos , Análise de Sequência de RNA , Transativadores/genética , Proteínas Virais Reguladoras e Acessórias
14.
Epigenetics Chromatin ; 11(1): 31, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895326

RESUMO

BACKGROUND: During sexual reproduction in the unicellular ciliate Stylonychia somatic macronuclei differentiate from germline micronuclei. Thereby, programmed sequence reduction takes place, leading to the elimination of > 95% of germline sequences, which priorly adopt heterochromatin structure via H3K27me3. Simultaneously, 27nt-ncRNAs become synthesized from parental transcripts and are bound by the Argonaute protein PIWI1. RESULTS: These 27nt-ncRNAs cover sequences destined to the developing macronucleus and are thought to protect them from degradation. We provide evidence and propose that RNA/DNA base-pairing guides PIWI1/27nt-RNA complexes to complementary macronucleus-destined DNA target sequences, hence transiently causing locally stalled replication during polytene chromosome formation. This spatiotemporal delay enables the selective deposition of temporarily available histone H3.4K27me3 nucleosomes at all other sequences being continuously replicated, thus dictating their prospective heterochromatin structure before becoming developmentally eliminated. Concomitantly, 27nt-RNA-covered sites remain protected. CONCLUSIONS: We introduce the concept of 'RNA-induced DNA replication interference' and explain how the parental functional genome partition could become transmitted to the progeny.


Assuntos
Cilióforos/fisiologia , Replicação do DNA , Histonas/genética , RNA Guia de Cinetoplastídeos/genética , Proteínas Argonautas/metabolismo , Cilióforos/genética , Variação Genética , Genoma de Protozoário , Micronúcleo Germinativo/genética , RNA de Protozoário/genética
15.
Clin Epigenetics ; 10: 37, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29581793

RESUMO

Background: Early pulmonary oxygen exposure is one of the most important factors implicated in the development of bronchopulmonary dysplasia (BPD). Methods: Here, we analyzed short- and long-term effects of neonatal hyperoxia on NOS3 and STAT3 expression and corresponding epigenetic signatures using a hyperoxia-based mouse model of BPD. Results: Early hyperoxia exposure led to a significant increase in NOS3 (median fold change × 2.37, IQR 1.54-3.68) and STAT3 (median fold change × 2.83, IQR 2.21-3.88) mRNA levels in pulmonary endothelial cells with corresponding changes in histone modification patterns such as H2aZac and H3K9ac hyperacetylation at the respective gene loci. No complete restoration in histone signatures at these loci was observed, and responsivity to later hyperoxia was altered in mouse lungs. In vitro, histone signatures in human aortic endothelial cells (HAEC) remained altered for several weeks after an initial long-term exposure to trichostatin A. This was associated with a substantial increase in baseline eNOS (median 27.2, IQR 22.3-35.6) and STAT3α (median 5.8, IQR 4.8-7.3) mRNA levels with a subsequent significant reduction in eNOS expression upon exposure to hypoxia. Conclusions: Early hyperoxia induced permanent changes in histones signatures at the NOS3 and STAT3 gene locus might partly explain the altered vascular response patterns in children with BPD.


Assuntos
Histonas/metabolismo , Hiperóxia/genética , Pulmão/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Fator de Transcrição STAT3/genética , Regulação para Cima , Acetilação , Animais , Linhagem Celular , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Epigênese Genética , Feminino , Humanos , Ácidos Hidroxâmicos/farmacologia , Hiperóxia/metabolismo , Recém-Nascido , Masculino , Camundongos
16.
Methods Mol Biol ; 1654: 179-196, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28986790

RESUMO

Small and long noncoding RNAs (ncRNAs) are key regulators of gene expression. Variations in ncRNA expression patterns can consequently affect the control of many cellular processes. Not just since 2006, when Andrew Z Fire and Craig C Mello were jointly awarded The Nobel Prize in Physiology or Medicine for their discovery of RNA interference, great efforts were undertaken to unleash the biomedical applicability of small noncoding RNAs, in particular microRNAs. With the technological evolution of massive parallel sequencing technologies over the last years, which now are available for an increasing number of scientists, there is a demand for comprehensible and efficient workflows reliable even for unique and valuable clinical specimens. Here we describe a highly reproducible low-cost protocol for analyses of miRNA expression patterns using tagged cDNA libraries and a multiplex sequencing strategy following an Illumina-like protocol. This protocol easily allows the identification of expression differences from samples of tissues of 1-2 mm3 and fluids of 50-200 µL. We further provide entry points into useful computational biology applications, whose target groups explicitly involve non-bioinformaticians.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , MicroRNAs/genética , RNA Longo não Codificante/genética , Animais , Biblioteca Gênica , Humanos
18.
FEBS J ; 284(21): 3550-3572, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28457020

RESUMO

Worldwide, chronic hepatitis B virus (HBV) infection is a major health problem and no cure exists. Importantly, hepatocyte intrusion by HBV particles results in a complex deregulation of both viral and host cellular genetic and epigenetic processes. Among the attempts to develop novel therapeutic approaches against HBV infection, several options targeting the epigenomic regulation of HBV replication are gaining attention. These include the experimental treatment with 'epidrugs'. Moreover, as a targeted approach, the principle of 'epigenetic editing' recently is being exploited to control viral replication. Silencing of HBV by specific rewriting of epigenetic marks might diminish viral replication, viremia, and infectivity, eventually controlling the disease and its complications. Additionally, epigenetic editing can be used as an experimental tool to increase our limited understanding regarding the role of epigenetic modifications in viral infections. Aiming for permanent epigenetic reprogramming of the viral genome without unspecific side effects, this breakthrough may pave the roads for an ambitious technological pursuit: to start designing a curative approach utilizing manipulative molecular therapies for viral infections in vivo.


Assuntos
Epigenômica , Vírus da Hepatite B/genética , Hepatite B/genética , Hepatite B/tratamento farmacológico , Hepatite B/metabolismo , Vírus da Hepatite B/metabolismo , Humanos , Replicação Viral/genética
20.
RNA Biol ; 13(8): 733-9, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-26786510

RESUMO

De novo addition of telomeric sequences can occur at broken chromosomes and must be well controlled, which is essential during programmed DNA reorganization processes. In ciliated protozoa an extreme form of DNA-reorganization is observed during macronuclear differentiation after sexual reproduction leading to the elimination of specific parts of the germline genome. Regulating these processes involves small noncoding RNAs, but in addition DNA-reordering, excision and amplification require RNA templates deriving from the parental macronucleus. We show that these putative RNA templates can carry telomeric repeats. Microinjection of RNA templates carrying modified telomeres into the developing macronucleus leads to modified telomeres in vegetative cells, providing strong evidence, that de novo addition of telomeres depends on a telomere-containing transcript from the parental macronucleus.


Assuntos
Replicação do DNA , RNA/genética , Telômero/genética , Moldes Genéticos , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Cilióforos/genética , Cilióforos/metabolismo , Amplificação de Genes , Variação Genética , Modelos Biológicos , RNA de Cadeia Dupla/genética , RNA não Traduzido/genética , Telômero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...