Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Nat Immunol ; 25(1): 166-177, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38057617

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hybrid immunity is more protective than vaccination or previous infection alone. To investigate the kinetics of spike-reactive T (TS) cells from SARS-CoV-2 infection through messenger RNA vaccination in persons with hybrid immunity, we identified the T cell receptor (TCR) sequences of thousands of index TS cells and tracked their frequency in bulk TCRß repertoires sampled longitudinally from the peripheral blood of persons who had recovered from coronavirus disease 2019 (COVID-19). Vaccinations led to large expansions in memory TS cell clonotypes, most of which were CD8+ T cells, while also eliciting diverse TS cell clonotypes not observed before vaccination. TCR sequence similarity clustering identified public CD8+ and CD4+ TCR motifs associated with spike (S) specificity. Synthesis of longitudinal bulk ex vivo single-chain TCRß repertoires and paired-chain TCRÉ‘ß sequences from droplet sequencing of TS cells provides a roadmap for the rapid assessment of T cell responses to vaccines and emerging pathogens.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Linfócitos T CD8-Positivos , Vacinação , RNA Mensageiro/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Anticorpos Antivirais
2.
Methods Mol Biol ; 2682: 233-244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37610586

RESUMO

Enzyme-linked Immunosorbent assays or ELISAs are a versatile method for detecting various immunological ligands of interest. As the name suggests, ELISAs rely on the interaction between a ligand and an antibody to produce results. In the study of infectious disease, ELISAs are commonly used to determine if a pathogen-specific immune response has occurred in a host organism. These assays can be performed in serosurveys as part of epidemiological investigations during, or following, an infectious disease outbreak. In the research environment, ELISAs are used to quantify the humoral immune response following infection or vaccination of a host organism. Data from these assays can be used to determine the type of immune response elicited (e.g. IgG1 vs IgG2) and the robustness of the response. Here, we describe ELISAs that were developed for the study of either hamsters or non-human primates vaccinated against Nipah virus infection, or infected with Nipah virus. The ELISAs described include assays for both IgG and IgM in the hamster and non-human primate models for Nipah virus-induced disease. An assay was also developed for the detection of IgA in bronchoalveolar lavage from non-human primates.


Assuntos
Bioensaio , Imunoglobulina G , Animais , Cricetinae , Ensaio de Imunoadsorção Enzimática , Lavagem Broncoalveolar , Primatas
3.
Antiviral Res ; 213: 105589, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37003305

RESUMO

The COVID-19 pandemic spurred the rapid development of a range of therapeutic antibody treatments. As part of the US government's COVID-19 therapeutic response, a research team was assembled to support assay and animal model development to assess activity for therapeutics candidates against SARS-CoV-2. Candidate treatments included monoclonal antibodies, antibody cocktails, and products derived from blood donated by convalescent patients. Sixteen candidate antibody products were obtained directly from manufacturers and evaluated for neutralization activity against the WA-01 isolate of SARS-CoV-2. Products were further tested in the Syrian hamster model using prophylactic (-24 h) or therapeutic (+8 h) treatment approaches relative to intranasal SARS-CoV-2 exposure. In vivo assessments included daily clinical scores and body weights. Viral RNA and viable virus titers were quantified in serum and lung tissue with histopathology performed at 3d and 7d post-virus-exposure. Sham-treated, virus-exposed hamsters showed consistent clinical signs with concomitant weight loss and had detectable viral RNA and viable virus in lung tissue. Histopathologically, interstitial pneumonia with consolidation was present. Therapeutic efficacy was identified in treated hamsters by the absence or diminution of clinical scores, body weight loss, viral loads, and improved semiquantitative lung histopathology scores. This work serves as a model for the rapid, systematic in vitro and in vivo assessment of the efficacy of candidate therapeutics at various stages of clinical development. These efforts provided preclinical efficacy data for therapeutic candidates. Furthermore, these studies were invaluable for the phenotypic characterization of SARS CoV-2 disease in hamsters and of utility to the broader scientific community.


Assuntos
COVID-19 , SARS-CoV-2 , Cricetinae , Animais , Humanos , Mesocricetus , Pandemias , Anticorpos Monoclonais/uso terapêutico , Modelos Animais de Doenças , RNA Viral
4.
NPJ Vaccines ; 7(1): 166, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528644

RESUMO

Experimental vaccines for the deadly zoonotic Nipah (NiV), Hendra (HeV), and Ebola (EBOV) viruses have focused on targeting individual viruses, although their geographical and bat reservoir host overlaps warrant creation of multivalent vaccines. Here we explored whether replication-incompetent pseudotyped vesicular stomatitis virus (VSV) virions or NiV-based virus-like particles (VLPs) were suitable multivalent vaccine platforms by co-incorporating multiple surface glycoproteins from NiV, HeV, and EBOV onto these virions. We then enhanced the vaccines' thermotolerance using carbohydrates to enhance applicability in global regions that lack cold-chain infrastructure. Excitingly, in a Syrian hamster model of disease, the VSV multivalent vaccine elicited safe, strong, and protective neutralizing antibody responses against challenge with NiV, HeV, or EBOV. Our study provides proof-of-principle evidence that replication-incompetent multivalent viral particle vaccines are sufficient to provide protection against multiple zoonotic deadly viruses with high pandemic potential.

5.
medRxiv ; 2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36415460

RESUMO

Understanding early innate immune responses to coronavirus disease 2019 (COVID-19) is crucial to developing targeted therapies to mitigate disease severity. Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 infection elicits interferon expression leading to transcription of IFN-stimulated genes (ISGs) to control viral replication and spread. SARS-CoV-2 infection also elicits NF-κB signaling which regulates inflammatory cytokine expression contributing to viral control and likely disease severity. Few studies have simultaneously characterized these two components of innate immunity to COVID-19. We designed a study to characterize the expression of interferon alpha-2 (IFNA2) and interferon beta-1 (IFNB1), both type-1 interferons (IFN-1), interferon-gamma (IFNG), a type-2 interferon (IFN-2), ISGs, and NF-κB response genes in the upper respiratory tract (URT) of patients with mild (outpatient) versus severe (hospitalized) COVID-19. Further, we characterized the weekly dynamics of these responses in the upper and lower respiratory tracts (LRTs) and blood of severe patients to evaluate for compartmental differences. We observed significantly increased ISG and NF-κB responses in the URT of mild compared with severe patients early during illness. This pattern was associated with increased IFNA2 and IFNG expression in the URT of mild patients, a trend toward increased IFNB1-expression and significantly increased STING/IRF3/cGAS expression in the URT of severe patients. Our by-week across-compartment analysis in severe patients revealed significantly higher ISG responses in the blood compared with the URT and LRT of these patients during the first week of illness, despite significantly lower expression of IFNA2, IFNB1, and IFNG in blood. NF-κB responses, however, were significantly elevated in the LRT compared with the URT and blood of severe patients during peak illness (week 2). Our data support that severe COVID-19 is associated with impaired interferon signaling in the URT during early illness and robust pro-inflammatory responses in the LRT during peak illness.

6.
Res Sq ; 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36263073

RESUMO

Almost three years into the SARS-CoV-2 pandemic, hybrid immunity is highly prevalent worldwide and more protective than vaccination or prior infection alone. Given emerging resistance of variant strains to neutralizing antibodies (nAb), it is likely that T cells contribute to this protection. To understand how sequential SARS-CoV-2 infection and mRNA-vectored SARS-CoV-2 spike (S) vaccines affect T cell clonotype-level expansion kinetics, we identified and cross-referenced TCR sequences from thousands of S-reactive single cells against deeply sequenced peripheral blood TCR repertoires longitudinally collected from persons during COVID-19 convalescence through booster vaccination. Successive vaccinations recalled memory T cells and elicited antigen-specific T cell clonotypes not detected after infection. Vaccine-related recruitment of novel clonotypes and the expansion of S-specific clones were most strongly observed for CD8+ T cells. Severe COVID-19 illness was associated with a more diverse CD4+ T cell response to SARS-CoV-2 both prior to and after mRNA vaccination, suggesting imprinting of CD4+ T cells by severe infection. TCR sequence similarity search algorithms revealed myriad public TCR clusters correlating with human leukocyte antigen (HLA) alleles. Selected TCRs from distinct clusters functionally recognized S in the predicted HLA context, with fine viral peptide requirements differing between TCRs. Most subjects tested had S-specific T cells in the nasal mucosa after a 3rd mRNA vaccine dose. The blood and nasal T cell responses to vaccination revealed by clonal tracking were more heterogeneous than nAb boosts. Analysis of bulk and single cell TCR sequences reveals T cell kinetics and diversity at the clonotype level, without requiring prior knowledge of T cell epitopes or HLA restriction, providing a roadmap for rapid assessment of T cell responses to emerging pathogens.

7.
Cell Rep ; 41(5): 111528, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302375

RESUMO

The emergence and global spread of the SARS-CoV-2 Omicron variants, which carry an unprecedented number of mutations, raise serious concerns due to the reduced efficacy of current vaccines and resistance to therapeutic antibodies. Here, we report the generation and characterization of two potent human monoclonal antibodies, NA8 and NE12, against the receptor-binding domain of the SARS-CoV-2 spike protein. NA8 interacts with a highly conserved region and has a breadth of neutralization with picomolar potency against the Beta variant and the Omicron BA.1 and BA.2 sublineages and nanomolar potency against BA.2.12.1 and BA.4. Combination of NA8 and NE12 retains potent neutralizing activity against the major SARS-CoV-2 variants of concern. Cryo-EM analysis provides the structural basis for the broad and complementary neutralizing activity of these two antibodies. We confirm the in vivo protective and therapeutic efficacies of NA8 and NE12 in the hamster model. These results show that broad and potent human antibodies can overcome the continuous immune escape of evolving SARS-CoV-2 variants.


Assuntos
Antineoplásicos Imunológicos , COVID-19 , Humanos , SARS-CoV-2 , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/genética , Testes de Neutralização , Anticorpos Antivirais/uso terapêutico , Proteínas do Envelope Viral , Glicoproteínas de Membrana/genética , Anticorpos Neutralizantes/uso terapêutico
8.
EMBO Mol Med ; 14(8): e15230, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35781796

RESUMO

The recent emergence of multiple SARS-CoV-2 variants has caused considerable concern due to both reduced vaccine efficacy and escape from neutralizing antibody therapeutics. It is, therefore, paramount to develop therapeutic strategies that inhibit all known and future SARS-CoV-2 variants. Here, we report that all SARS-CoV-2 variants analyzed, including variants of concern (VOC) Alpha, Beta, Gamma, Delta, and Omicron, exhibit enhanced binding affinity to clinical grade and phase 2 tested recombinant human soluble ACE2 (APN01). Importantly, soluble ACE2 neutralized infection of VeroE6 cells and human lung epithelial cells by all current VOC strains with markedly enhanced potency when compared to reference SARS-CoV-2 isolates. Effective inhibition of infections with SARS-CoV-2 variants was validated and confirmed in two independent laboratories. These data show that SARS-CoV-2 variants that have emerged around the world, including current VOC and several variants of interest, can be inhibited by soluble ACE2, providing proof of principle of a pan-SARS-CoV-2 therapeutic.


Assuntos
Enzima de Conversão de Angiotensina 2 , Tratamento Farmacológico da COVID-19 , Humanos , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2
9.
medRxiv ; 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35043120

RESUMO

The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has triggered a devastating global health, social and economic crisis. The RNA nature and broad circulation of this virus facilitate the accumulation of mutations, leading to the continuous emergence of variants of concern with increased transmissibility or pathogenicity 1 . This poses a major challenge to the effectiveness of current vaccines and therapeutic antibodies 1, 2 . Thus, there is an urgent need for effective therapeutic and preventive measures with a broad spectrum of action, especially against variants with an unparalleled number of mutations such as the recently emerged Omicron variant, which is rapidly spreading across the globe 3 . Here, we used combinatorial antibody phage-display libraries from convalescent COVID-19 patients to generate monoclonal antibodies against the receptor-binding domain of the SARS-CoV-2 spike protein with ultrapotent neutralizing activity. One such antibody, NE12, neutralizes an early isolate, the WA-1 strain, as well as the Alpha and Delta variants with half-maximal inhibitory concentrations at picomolar level. A second antibody, NA8, has an unusual breadth of neutralization, with picomolar activity against both the Beta and Omicron variants. The prophylactic and therapeutic efficacy of NE12 and NA8 was confirmed in preclinical studies in the golden Syrian hamster model. Analysis by cryo-EM illustrated the structural basis for the neutralization properties of NE12 and NA8. Potent and broadly neutralizing antibodies against conserved regions of the SARS-CoV-2 spike protein may play a key role against future variants of concern that evade immune control.

10.
JCI Insight ; 7(1)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34807849

RESUMO

Sangivamycin is a nucleoside analog that is well tolerated by humans and broadly active against phylogenetically distinct viruses, including arenaviruses, filoviruses, and orthopoxviruses. Here, we show that sangivamycin is a potent antiviral against multiple variants of replicative severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with half-maximal inhibitory concentration in the nanomolar range in several cell types. Sangivamycin suppressed SARS-CoV-2 replication with greater efficacy than remdesivir (another broad-spectrum nucleoside analog). When we investigated sangivamycin's potential for clinical administration, pharmacokinetic; absorption, distribution, metabolism, and excretion (ADME); and toxicity properties were found to be favorable. When tested in combination with remdesivir, efficacy was additive rather than competitive against SARS-CoV-2. The proven safety in humans, long half-life, potent antiviral activity (compared to remdesivir), and combinatorial potential suggest that sangivamycin is likely to be efficacious alone or in combination therapy to suppress viremia in patients. Sangivamycin may also have the ability to help combat drug-resistant or vaccine-escaping SARS-CoV-2 variants since it is antivirally active against several tested variants. Our results support the pursuit of sangivamycin for further preclinical and clinical development as a potential coronavirus disease 2019 therapeutic.


Assuntos
Antivirais , Nucleosídeos de Pirimidina , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/farmacocinética , Antivirais/farmacologia , Antivirais/toxicidade , COVID-19/virologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Feminino , Humanos , Masculino , Camundongos , Nucleosídeos de Pirimidina/farmacocinética , Nucleosídeos de Pirimidina/farmacologia , Nucleosídeos de Pirimidina/toxicidade , Células Vero
11.
Viruses ; 13(10)2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34696439

RESUMO

Biosafety, biosecurity, logistical, political, and technical considerations can delay or prevent the wide dissemination of source material containing viable virus from the geographic origin of an outbreak to laboratories involved in developing medical countermeasures (MCMs). However, once virus genome sequence information is available from clinical samples, reverse-genetics systems can be used to generate virus stocks de novo to initiate MCM development. In this study, we developed a reverse-genetics system for natural isolates of Ebola virus (EBOV) variants Makona, Tumba, and Ituri, which have been challenging to obtain. These systems were generated starting solely with in silico genome sequence information and have been used successfully to produce recombinant stocks of each of the viruses for use in MCM testing. The antiviral activity of MCMs targeting viral entry varied depending on the recombinant virus isolate used. Collectively, selecting and synthetically engineering emerging EBOV variants and demonstrating their efficacy against available MCMs will be crucial for answering pressing public health and biosecurity concerns during Ebola disease (EBOD) outbreaks.


Assuntos
Ebolavirus/genética , Doença pelo Vírus Ebola/genética , Genética Reversa/métodos , Linhagem Celular , Surtos de Doenças , Ebolavirus/imunologia , Ebolavirus/patogenicidade , Genoma Viral/genética , Genótipo , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/virologia , Humanos , Contramedidas Médicas , Fenótipo , Filogenia
12.
bioRxiv ; 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34545368

RESUMO

The recent emergence of multiple SARS-CoV-2 variants has caused considerable concern due to reduced vaccine efficacy and escape from neutralizing antibody therapeutics. It is therefore paramount to develop therapeutic strategies that inhibit all known and future SARS-CoV-2 variants. Here we report that all SARS-CoV-2 variants analyzed, including variants of concern (VOC) Alpha, Beta, Gamma, and Delta, exhibit enhanced binding affinity to clinical grade and phase 2 tested recombinant human soluble ACE2 (APN01). Importantly, soluble ACE2 neutralized infection of VeroE6 cells and human lung epithelial cells by multiple VOC strains with markedly enhanced potency when compared to reference SARS-CoV-2 isolates. Effective inhibition of infections with SARS-CoV-2 variants was validated and confirmed in two independent laboratories. These data show that SARS-CoV-2 variants that have emerged around the world, including current VOC and several variants of interest, can be inhibited by soluble ACE2, providing proof of principle of a pan-SARS-CoV-2 therapeutic.

13.
Sci Transl Med ; 13(616): eabj5413, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34519517

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern threatens the efficacy of existing vaccines and therapeutic antibodies and underscores the need for additional antibody-based tools that potently neutralize variants by targeting multiple sites of the spike protein. We isolated 216 monoclonal antibodies targeting SARS-CoV-2 from plasmablasts and memory B cells collected from patients with coronavirus disease 2019. The three most potent antibodies targeted distinct regions of the receptor binding domain (RBD), and all three neutralized the SARS-CoV-2 Alpha and Beta variants. The crystal structure of the most potent antibody, CV503, revealed that it binds to the ridge region of SARS-CoV-2 RBD, competes with the angiotensin-converting enzyme 2 receptor, and has limited contact with key variant residues K417, E484, and N501. We designed bispecific antibodies by combining nonoverlapping specificities and identified five bispecific antibodies that inhibit SARS-CoV-2 infection at concentrations of less than 1 ng/ml. Through a distinct mode of action, three bispecific antibodies cross-linked adjacent spike proteins using dual N-terminal domain­RBD specificities. One bispecific antibody was greater than 100-fold more potent than a cocktail of its parent monoclonals in vitro and prevented clinical disease in a hamster model at a dose of 2.5 mg/kg. Two bispecific antibodies in our panel comparably neutralized the Alpha, Beta, Gamma, and Delta variants and wild-type virus. Furthermore, a bispecific antibody that neutralized the Beta variant protected hamsters against SARS-CoV-2 expressing the E484K mutation. Thus, bispecific antibodies represent a promising next-generation countermeasure against SARS-CoV-2 variants of concern.


Assuntos
Anticorpos Biespecíficos , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Biespecíficos/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19 , Humanos , SARS-CoV-2
14.
Viruses ; 13(5)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065987

RESUMO

As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic expanded, it was clear that effective testing for the presence of neutralizing antibodies in the blood of convalescent patients would be critical for development of plasma-based therapeutic approaches. To address the need for a high-quality neutralization assay against SARS-CoV-2, a previously established fluorescence reduction neutralization assay (FRNA) against Middle East respiratory syndrome coronavirus (MERS-CoV) was modified and optimized. The SARS-CoV-2 FRNA provides a quantitative assessment of a large number of infected cells through use of a high-content imaging system. Because of this approach, and the fact that it does not involve subjective interpretation, this assay is more efficient and more accurate than other neutralization assays. In addition, the ability to set robust acceptance criteria for individual plates and specific test wells provided further rigor to this assay. Such agile adaptability avails use with multiple virus variants. By February 2021, the SARS-CoV-2 FRNA had been used to screen over 5000 samples, including acute and convalescent plasma or serum samples and therapeutic antibody treatments, for SARS-CoV-2 neutralizing titers.


Assuntos
Anticorpos Neutralizantes/análise , COVID-19/imunologia , Testes de Neutralização/métodos , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , COVID-19/metabolismo , COVID-19/terapia , Chlorocebus aethiops , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Imunização Passiva , Imunoglobulina G/sangue , Pandemias , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero , Soroterapia para COVID-19
15.
J Infect Dis ; 224(8): 1294-1304, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34089610

RESUMO

BACKGROUND: Characterizing the kinetics of the antibody response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is of critical importance to developing strategies that may mitigate the public health burden of coronavirus disease 2019 (COVID-19). We conducted a prospective, longitudinal analysis of COVID-19 convalescent plasma donors at multiple time points over an 11-month period to determine how circulating antibody levels change over time following natural infection. METHODS: From April 2020 to February 2021, we enrolled 228 donors. At each study visit, subjects either donated plasma or had study samples drawn only. Anti-SARS-CoV-2 donor testing was performed using the VITROS Anti-SARS-CoV-2 Total and IgG assays and an in-house fluorescence reduction neutralization assay. RESULTS: Anti-SARS-CoV-2 antibodies were identified in 97% of COVID-19 convalescent donors at initial presentation. In follow-up analyses, of 116 donors presenting at repeat time points, 91.4% had detectable IgG levels up to 11 months after symptom recovery, while 63% had detectable neutralizing titers; however, 25% of donors had neutralizing levels that dropped to an undetectable titer over time. CONCLUSIONS: Our data suggest that immunological memory is acquired in most individuals infected with SARS-CoV-2 and is sustained in a majority of patients for up to 11 months after recovery. Clinical Trials Registration. NCT04360278.


Assuntos
Imunidade Adaptativa , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/sangue , COVID-19/diagnóstico , COVID-19/virologia , Convalescença , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , SARS-CoV-2/isolamento & purificação , Fatores de Tempo , Adulto Jovem
16.
Microorganisms ; 9(3)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801811

RESUMO

Outbreaks of Ebola ebolavirus (EBOV) have been associated with high morbidity and mortality. Milestones have been reached recently in the management of EBOV disease (EVD) with licensure of an EBOV vaccine and two monoclonal antibody therapies. However, neither vaccines nor therapies are available for other disease-causing filoviruses. In preparation for such outbreaks, and for more facile and cost-effective management of EVD, we seek a cocktail containing orally available and room temperature stable drugs with strong activity against multiple filoviruses. We previously showed that (bepridil + sertraline) and (sertraline + toremifene) synergistically suppress EBOV in cell cultures. Here, we describe steps towards testing these combinations in a mouse model of EVD. We identified a vehicle suitable for oral delivery of the component drugs and determined that, thus formulated the drugs are equally active against EBOV as preparations in DMSO, and they maintain activity upon storage in solution for up to seven days. Pharmacokinetic (PK) studies indicated that the drugs in the oral delivery vehicle are well tolerated in mice at the highest doses tested. Collectively the data support advancement of these combinations to tests for synergy in a mouse model of EVD. Moreover, mathematical modeling based on human oral PK projects that the combinations would be more active in humans than their component single drugs.

17.
bioRxiv ; 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33821267

RESUMO

The emergence of SARS-CoV-2 variants that threaten the efficacy of existing vaccines and therapeutic antibodies underscores the urgent need for new antibody-based tools that potently neutralize variants by targeting multiple sites of the spike protein. We isolated 216 monoclonal antibodies targeting SARS-CoV-2 from plasmablasts and memory B cells of COVID-19 patients. The three most potent antibodies targeted distinct regions of the RBD, and all three neutralized the SARS-CoV-2 variants B.1.1.7 and B.1.351. The crystal structure of the most potent antibody, CV503, revealed that it binds to the ridge region of SARS-CoV-2 RBD, competes with the ACE2 receptor, and has limited contact with key variant residues K417, E484 and N501. We designed bispecific antibodies by combining non-overlapping specificities and identified five ultrapotent bispecific antibodies that inhibit authentic SARS-CoV-2 infection at concentrations of <1 ng/mL. Through a novel mode of action three bispecific antibodies cross-linked adjacent spike proteins using dual NTD/RBD specificities. One bispecific antibody was >100-fold more potent than a cocktail of its parent monoclonals in vitro and prevented clinical disease in a hamster model at a 2.5 mg/kg dose. Notably, six of nine bispecific antibodies neutralized B.1.1.7, B.1.351 and the wild-type virus with comparable potency, despite partial or complete loss of activity of at least one parent monoclonal antibody against B.1.351. Furthermore, a bispecific antibody that neutralized B.1.351 protected against SARS-CoV-2 expressing the crucial E484K mutation in the hamster model. Thus, bispecific antibodies represent a promising next-generation countermeasure against SARS-CoV-2 variants of concern.

18.
Viruses ; 13(4)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917085

RESUMO

Simian hemorrhagic fever virus (SHFV) causes acute, lethal disease in macaques. We developed a single-plasmid cDNA-launch infectious clone of SHFV (rSHFV) and modified the clone to rescue an enhanced green fluorescent protein-expressing rSHFV-eGFP that can be used for rapid and quantitative detection of infection. SHFV has a narrow cell tropism in vitro, with only the grivet MA-104 cell line and a few other grivet cell lines being susceptible to virion entry and permissive to infection. Using rSHFV-eGFP, we demonstrate that one cricetid rodent cell line and three ape cell lines also fully support SHFV replication, whereas 55 human cell lines, 11 bat cell lines, and three rodent cells do not. Interestingly, some human and other mammalian cell lines apparently resistant to SHFV infection are permissive after transfection with the rSHFV-eGFP cDNA-launch plasmid. To further demonstrate the investigative potential of the infectious clone system, we introduced stop codons into eight viral open reading frames (ORFs). This approach suggested that at least one ORF, ORF 2b', is dispensable for SHFV in vitro replication. Our proof-of-principle experiments indicated that rSHFV-eGFP is a useful tool for illuminating the understudied molecular biology of SHFV.


Assuntos
Arterivirus/genética , DNA Complementar/genética , Proteínas de Fluorescência Verde/genética , Fases de Leitura Aberta , RNA Viral/genética , Recombinação Genética , Replicação Viral/genética , Animais , Arterivirus/fisiologia , Linhagem Celular , Quirópteros , Hominidae , Humanos , Plasmídeos/genética , Estudo de Prova de Conceito , Roedores
19.
medRxiv ; 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33758897

RESUMO

BACKGROUND: Characterizing the kinetics of the antibody response to SARS□CoV□2 is of critical importance to developing strategies that may mitigate the public health burden of COVID-19. We sought to determine how circulating antibody levels change over time following natural infection. METHODS/MATERIALS: We conducted a prospective, longitudinal analysis of COVID-19 convalescent plasma (CCP) donors at multiple time points over a 9-month period. At each study visit, subjects either donated plasma or only had study samples drawn. In all cases, anti-SARS-CoV-2 donor testing was performed using semi-quantitative chemiluminescent immunoassays (ChLIA) targeting subunit 1 (S1) of the SARS-CoV-2 spike (S) protein, and an in-house fluorescence reduction neutralization assay (FRNA). RESULTS: From April to November 2020 we enrolled 202 donors, mean age 47.3 ±14.7 years, 55% female, 75% Caucasian. Most donors reported a mild clinical course (91%, n=171) without hospitalization. One hundred and five (105) (52%) donors presented for repeat visits with a median 42 (12-163) days between visits. The final visit occurred at a median 160 (53-273) days post-symptom resolution. Total anti-SARS-CoV-2 antibodies (Ab), SARS-CoV-2 specific IgG and neutralizing antibodies were detected in 97.5%, 91.1%, and 74% of donors respectively at initial presentation. Neutralizing Ab titers based on FRNA 50 were positively associated with mean IgG levels (p = <0.0001). Mean IgG levels and neutralizing titers were positively associated with COVID-19 severity, increased donor age and BMI (p=0.0006 and p=0.0028, p=0.0083 and p=0.0363, (p=0.0008 and p=0.0018, respectively). Over the course of repeat visits, IgG decreased in 74.1% of donors; FRNA 50 decreased in 44.4% and remained unchanged in 33.3% of repeat donors. A weak negative correlation was observed between total Ab levels and number of days post-symptom recovery (r = 0.09). CONCLUSION: Anti-SARS-CoV-2 antibodies were identified in 97% of convalescent donors at initial presentation. In a cohort that largely did not require hospitalization. IgG and neutralizing antibodies were positively correlated with age, BMI and clinical severity, and persisted for up to 9 months post-recovery from natural infection. On repeat presentation, IgG anti-SARS-CoV-2 levels decreased in 56% of repeat donors. Overall, these data suggest that CP donors possess a wide range of IgG and neutralizing antibody levels that are proportionally distributed across demographics, with the exception of age, BMI and clinical severity.

20.
bioRxiv ; 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33688658

RESUMO

As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic was expanding, it was clear that effective testing for the presence of neutralizing antibodies in the blood of convalescent patients would be critical for development of plasma-based therapeutic approaches. To address the need for a high-quality neutralization assay against SARS-CoV-2, a previously established fluorescence reduction neutralization assay (FRNA) against Middle East respiratory syndrome coronavirus (MERS-CoV) was modified and optimized. The SARS-CoV-2 FRNA provides a quantitative assessment of a large number of infected cells through use of a high-content imaging system. Because of this approach, and the fact that it does not involve subjective interpretation, this assay is more efficient and more accurate than other neutralization assays. In addition, the ability to set robust acceptance criteria for individual plates and specific test wells provided further rigor to this assay. Such agile adaptability avails use with multiple virus variants. By February 2021, the SARS-CoV-2 FRNA had been used to screen over 5,000 samples, including acute and convalescent plasma or serum samples and therapeutic antibody treatments, for SARS-CoV-2 neutralizing titers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...