Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 599(7885): 507-512, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34707295

RESUMO

The dearth of new medicines effective against antibiotic-resistant bacteria presents a growing global public health concern1. For more than five decades, the search for new antibiotics has relied heavily on the chemical modification of natural products (semisynthesis), a method ill-equipped to combat rapidly evolving resistance threats. Semisynthetic modifications are typically of limited scope within polyfunctional antibiotics, usually increase molecular weight, and seldom permit modifications of the underlying scaffold. When properly designed, fully synthetic routes can easily address these shortcomings2. Here we report the structure-guided design and component-based synthesis of a rigid oxepanoproline scaffold which, when linked to the aminooctose residue of clindamycin, produces an antibiotic of exceptional potency and spectrum of activity, which we name iboxamycin. Iboxamycin is effective against ESKAPE pathogens including strains expressing Erm and Cfr ribosomal RNA methyltransferase enzymes, products of genes that confer resistance to all clinically relevant antibiotics targeting the large ribosomal subunit, namely macrolides, lincosamides, phenicols, oxazolidinones, pleuromutilins and streptogramins. X-ray crystallographic studies of iboxamycin in complex with the native bacterial ribosome, as well as with the Erm-methylated ribosome, uncover the structural basis for this enhanced activity, including a displacement of the [Formula: see text] nucleotide upon antibiotic binding. Iboxamycin is orally bioavailable, safe and effective in treating both Gram-positive and Gram-negative bacterial infections in mice, attesting to the capacity for chemical synthesis to provide new antibiotics in an era of increasing resistance.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/classificação , Clindamicina/síntese química , Clindamicina/farmacologia , Descoberta de Drogas , Lincomicina/síntese química , Lincomicina/farmacologia , Metiltransferases/genética , Metiltransferases/metabolismo , Testes de Sensibilidade Microbiana , Modelos Moleculares , Oxepinas , Piranos , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Ribossomos/química , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Thermus thermophilus/efeitos dos fármacos , Thermus thermophilus/enzimologia , Thermus thermophilus/genética
2.
J Am Chem Soc ; 143(29): 11019-11025, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34264649

RESUMO

A gram-scale synthesis of iboxamycin, an antibiotic candidate bearing a fused bicyclic amino acid residue, is presented. A pivotal transformation in the route involves an intramolecular hydrosilylation-oxidation sequence to set the ring-fusion stereocenters of the bicyclic scaffold. Other notable features of the synthesis include a high-yielding, highly diastereoselective alkylation of a pseudoephenamine amide, a convergent sp3-sp2 Negishi coupling, and a one-pot transacetalization-reduction reaction to form the target compound's oxepane ring. Implementation of this synthetic strategy has provided ample quantities of iboxamycin to allow for its in vivo profiling in murine models of infection.


Assuntos
Antibacterianos/síntese química , Oxepinas/síntese química , Piranos/síntese química , Antibacterianos/química , Cristalografia por Raios X , Modelos Moleculares , Conformação Molecular , Oxepinas/química , Piranos/química , Estereoisomerismo
3.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925857

RESUMO

Building-up and breaking-down of carbohydrates are processes common to all forms of life. Glycoside hydrolases are a broad class of enzymes that play a central role in the cleavage of glycosidic bonds, which is fundamental to carbohydrate degradation. The large majority of substrates are five- and six-membered ring glycosides. Our interest in seven-membered ring septanose sugars has inspired the development of a way to search for septanoside hydrolase activity. Described here is a strategy for the discovery of septanoside hydrolases that uses synthetic indolyl septanosides as chromogenic substrates. Access to these tool compounds was enabled by a route where septanosyl halides act as glycosyl donors for the synthesis of the indolyl septanosides. The screening strategy leverages the known dimerization of 3-hydroxy-indoles to make colored dyes, as occurs when the ß-galactosidase substrate X-Gal is hydrolyzed. Because screens in bacterial cells would enable searches in organisms that utilize heptoses or from metagenomics libraries, we also demonstrate that septanosides are capable of entering E. coli cells through the use of a BODIPY-labeled septanoside. The modularity of the indolyl septanoside synthesis should allow the screening of a variety of substrates that mimic natural structures via this general approach.


Assuntos
Escherichia coli/metabolismo , Glicosídeos/biossíntese , Hidrolases/metabolismo , Metabolismo dos Carboidratos , Compostos Cromogênicos/química , Escherichia coli/química , Galactosídeos/biossíntese , Galactosídeos/química , Glicosídeo Hidrolases/metabolismo , Glicosídeos/química , Hidrólise , Indóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...