Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 1350-1354, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31946143

RESUMO

The threat of Hepatocellular Carcinoma (HCC) is a growing problem, with incidence rates anticipated to near double over the next two decades. The increasing burden makes discovery of novel diagnostic, prognostic, and therapeutic biomarkers distinguishing HCC from underlying cirrhosis a significant focus. In this study, we analyzed tissue and serum samples from 40 HCC cases and 25 patients with liver cirrhosis (CIRR) to better understand the mechanistic differences between HCC and CIRR. Through pathway and network analysis, we are able to take a systems biology approach to conduct multi-omic analysis of transcriptomic, glycoproteomic, and metabolomic data acquired through various platforms. As a result, we are able to identify the FXR/RXR Activation pathway as being represented by molecules spanning multiple molecular compartments in these samples. Specifically, serum metabolites deoxycholate and chenodeoxycholic acid and serum glycoproteins C4A/C4B, KNG1, and HPX are biomarker candidates identified from this analysis that are of interest for future targeted studies. These results demonstrate the integrative power of multi-omic analysis to prioritize clinically and biologically relevant biomarker candidates that can increase understanding of molecular mechanisms driving HCC and make an impact in patient care.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores Tumorais , Humanos , Cirrose Hepática , Masculino , Metabolômica
2.
Artigo em Inglês | MEDLINE | ID: mdl-31218095

RESUMO

Gas Chromatography coupled with Mass Spectrometry (GC-MS) has been broadly used for the detection of changes in metabolite levels in complex samples. Internal Standards (IS) spiked into a complex background at different concentrations help assess the capability of GC-MS in detecting changes in metabolite levels. This study uses a Latin square design to evaluate the ability of GC-MS in full scan and Single Ion Monitoring (SIM) modes to detect changes among IS spiked into human plasma samples at varying concentrations. Statistical analysis of the data demonstrates the potential of GC-MS to detect true differences over a wide range of concentration levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...