Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Veg Hist Archaeobot ; 29(4): 407-426, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32624646

RESUMO

The present study aims to reconstruct vegetation development, climate changes and human impact using an ombrotrophic peat core from the Coltrondo bog in the eastern Italian Alps. Evidence from pollen, micro-charcoal, major and trace elements, and lead isotopes from this 7,900 years old peat deposit has been combined, and several climatic oscillations and phases of human impact detected. In particular, human presence was recorded in this area of the Alps from about 650 cal bc, with periods of increased activity at the end of the Middle Ages and also at the end of the 19th century, as evidenced by both human-related pollen and the increase in micro-charcoal particles. The enrichment factor of lead (EFPb) increased since the Roman period and the Middle Ages, suggesting mainly mining activities, whereas the advent of industrialization in the 20th century is marked by the highest EFPb values in the whole core. The EFPb data are strongly supported by the 206Pb/207Pb values and these are in general agreement with the historical information available. Therefore, the multi-proxy approach used here has allowed detection of climatic events and human impact patterns in the Comelico area starting from the Iron Age, giving new insights into the palaeoecology as well as the course of the interaction among humans, climate and ecosystems in this part of the eastern Italian Alps.

2.
Microbiome ; 5(1): 32, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28283029

RESUMO

BACKGROUND: A critical aspect regarding the global dispersion of pathogenic microorganisms is associated with atmospheric movement of soil particles. Especially, desert dust storms can transport alien microorganisms over continental scales and can deposit them in sensitive sink habitats. In winter 2014, the largest ever recorded Saharan dust event in Italy was efficiently deposited on the Dolomite Alps and was sealed between dust-free snow. This provided us the unique opportunity to overcome difficulties in separating dust associated from "domestic" microbes and thus, to determine with high precision microorganisms transported exclusively by desert dust. RESULTS: Our metagenomic analysis revealed that sandstorms can move not only fractions but rather large parts of entire microbial communities far away from their area of origin and that this microbiota contains several of the most stress-resistant organisms on Earth, including highly destructive fungal and bacterial pathogens. In particular, we provide first evidence that winter-occurring dust depositions can favor a rapid microbial contamination of sensitive sink habitats after snowmelt. CONCLUSIONS: Airborne microbial depositions accompanying extreme meteorological events represent a realistic threat for ecosystem and public health. Therefore, monitoring the spread and persistence of storm-travelling alien microbes is a priority while considering future trajectories of climatic anomalies as well as anthropogenically driven changes in land use in the source regions.


Assuntos
Microbiologia do Ar , Bactérias/isolamento & purificação , Clima Desértico , Poeira/análise , Microbiota , Vento , África do Norte , Bactérias/classificação , Bactérias/genética , Bactérias/patogenicidade , Biodiversidade , Mudança Climática , Ecossistema , Aquecimento Global , Itália , Metagenômica , Consórcios Microbianos , Saúde Pública , Estações do Ano , Dióxido de Silício
3.
Anal Bioanal Chem ; 407(2): 379-85, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25404165

RESUMO

Ombrotrophic peatlands are remarkable repositories of high-quality climatic signals because their only source of nutrients is precipitation. Although several analytical techniques are available for analysing inorganic components in peat samples, they generally provide only low-resolution data sets. Here we present a new analytical approach for producing high-resolution data on main and trace elements from ombrotrophic peat cores. Analyses were carried out on a 7-m-long peat core collected from Danta di Cadore, North-Eastern Italy (46° 34' 16″ N, 12° 29' 58″ E). Ca, Ti, Cr, Fe, Cu, Zn, Ga, Sr, Y, Cd, Ba and Pb were detected at a resolution of 2.5 mm with a non-destructive X-ray fluorescence core scanner (XRF-CS). Calibration and quantification of the XRF-CS intensities was obtained using collision reaction cell inductively coupled plasma quadruple mass spectrometry (CRC-ICP-QMS). CRC-ICP-QMS measurements were carried out on discrete samples at a resolution of 1 cm, after dissolution of 150-mg aliquots with 9 ml HNO3 and 1 ml HF at 220 °C in a microwave system. We compare qualitative XRF-CS and quantitative CRC-ICP-MS data and, however the several sources of variability of the data, develop a robust statistical approach to determine the R (2) and the coefficient of a simple regression model together with confidence intervals. Perfect positive correlations were estimated for Cd, Cr, Pb, Sr, Ti and Zn; high positive correlations for Ba (0.8954), Y (0.7378), Fe (0.7349) and Cu (0.7028); while moderate positive correlations for Ga (0.5951) and Ca (0.5435). With our results, we demonstrate that XRF scanning techniques can be used, together with other well-established geochemical techniques (such as ICP-MS), to produce high-resolution (up to 2.5 mm) quantitative data from ombrotrophic peat bog cores.


Assuntos
Espectrometria de Massas/métodos , Metais/análise , Solo/química , Espectrometria por Raios X/métodos , Calibragem , Clima , Monitoramento Ambiental/métodos , Itália , Limite de Detecção , Espectrometria de Massas/instrumentação , Análise de Regressão , Espectrometria por Raios X/instrumentação
4.
Anal Bioanal Chem ; 405(2-3): 647-54, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22349340

RESUMO

Iodine and bromine species participate in key atmospheric reactions including the formation of cloud condensation nuclei and ozone depletion. We present a novel method coupling a high-performance liquid chromatography with ion chromatography and inductively coupled plasma mass spectrometry, which allows the determination of iodine (I) and bromine (Br) species (IO(3)(-), I(-), Br(-), BrO(3)(-) ) at the picogram-per-gram levels presents in Antarctic ice. Chromatographic separation was achieved using an IONPAC® AS16 Analytical Column with NaOH as eluent. Detection limits for I and Br species were 5 to 9 pg g(-1) with an uncertainty of less than 2.5% for all considered species. Inorganic iodine and bromine species have been determined in Antarctic ice core samples, with concentrations close to the detection limits for iodine species, and approximately 150 pg g(-1) for Br(-). Although iodate (IO(3)(-)) is the most abundant iodine species in the atmosphere, only the much rarer iodide (I(-)) species was present in Antarctic Holocene ice. Bromine was found to be present in Antarctic ice as Br(-).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...