Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Proc Natl Acad Sci U S A ; 78(7): 4601-5, 1981 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16593064

RESUMO

Reticulitermes flavipes termites synthesize uric acid via purine-nucleoside phosphorylase (purine-nucleoside: orthophosphate ribosyltransferase, EC 2.4.2.1) and xanthine dehydrogenase (xanthine:NAD(+) oxidoreductase, EC 1.2.1.37), but their tissues lack uricase (urate:oxygen oxidoreductase, EC 1.7.3.3) or any other enzyme that degrades uric acid. Nevertheless, uricolysis occurs in termites, but as an anaerobic process mediated by hindgut bacteria. (14)C-Tracer experiments showed that termites transport uric acid from the site of synthesis and storage (fat body tissue) to the site of degradation (hindgut microbiota) via Malpighian tubules. Moveover, [1,3-(15)N]uric acid dissimilated by gut bacteria in vivo leads to assimilation of (15)N into termite tissues. NH(3), a product of uricolysis, is a potential N source for termites, either directly via glutamine synthetase [L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2] activity of fat body tissue or indirectly through microbe assimilation. Symbiotic recycling of uric acid N appears to be important to N conservation in these oligonitrotrophic insects.

3.
Appl Environ Microbiol ; 40(1): 117-24, 1980 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16345587

RESUMO

Uricolytic bacteria were present in guts of Reticulitermes flavipes in populations up to 6 x 10 cells per gut. Of 82 strains isolated under strict anaerobic conditions, most were group N Streptococcus sp., Bacteroides termitidis, and Citrobacter sp. All isolates used uric acid (UA) as an energy source anaerobically, but not aerobically, and NH(3) was the major nitrogenous product of uricolysis. However, none of the isolates had an absolute requirement for UA. Utilization of heterocyclic compounds other than UA was limited. Fresh termite gut contents also degraded UA anaerobically, as measured by CO(2) evolution from [2-C]UA. The magnitude of anaerobic uricolysis [0.67 pmol of UA catabolized/(gut x h)] was entirely consistent with the population density of uricolytic bacteria in situ. Uricolytic gut bacteria may convert UA in situ to products usable by termites for carbon, nitrogen, energy, or all three. This possibility is consistent with the fact that R. flavipes termites from UA, but they do not void the purine in excreta despite the lack of uricase in their tissues.

4.
Appl Environ Microbiol ; 40(1): 125-32, 1980 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16345588

RESUMO

A study was done of anaerobic degradation of uric acid (UA) by representative strains of uricolytic bacteria isolated from guts of Reticulitermes flavipes termites. Streptococcus strain UAD-1 degraded UA incompletely, secreting a fluorescent compound into the medium, unless formate (or a formicogenic compound) was present as a cosubstrate. Formate functioned as a reductant, and its oxidation to CO(2) by formate dehydrogenase provided 2H + 2e needed to drive uricolysis to completion. Uricolysis by Streptococcus UAD-1 thus corresponded to the following equation: 1UA + 1formate --> 4CO(2) + 1acetate + 4NH(3). Urea did not appear to be an intermediate in CO(2) and NH(3) formation during uricolysis by strain UAD-1. Formate dehydrogenase and uricolytic activities of strain UAD-1 were inducible by growth of cells on UA. Bacteroides termitidis strain UAD-50 degraded UA as follows: 1UA --> 3.5 CO(2) + 0.75acetate + 4NH(3). Exogenous formate was neither required for nor stimulatory to uricolysis by strain UAD-50. Studies of UA catabolism by Citrobacter strains were limited, because only small amounts of UA were metabolized by cells in liquid medium. Uricolytic activity of such bacteria in situ could be important to the carbon, nitrogen, and energy economy of R. flavipes.

5.
J Bacteriol ; 134(2): 381-8, 1978 May.
Artigo em Inglês | MEDLINE | ID: mdl-96087

RESUMO

Cells of Rhodospirillum rubrum were grown photoorganotrophically and chemoorganotrophically and then starved for organic carbon and combined nitrogen under four conditions: anaerobically in the light and dark and aerobically in the light and dark. Illumination prolonged viability and suppressed the net degradation of cell material of phototrophically grown cells, but had no effect on chemotrophically grown cells that did not contain bacteriochlorophyll. The half-life survival times of carbohydrate-rich phototrophically grown cells during starvation anaerobically or aerobically in the light were 17 and 14.5 days, respectively. The values for starvation aerobically and anaerobically in the dark were 3 and 0.5 days, respectively. Chemotrophically grown cells had half-life survival times of 3 and 4 days during starvation aerobically in the light and dark, respectively, and 0.8 day during starvation anaerobically in the light or dark. Of all cell constituents examined, carbohydrate was most extensively degraded during starvation, although the rate of degradation was slowest for phototrophically grown cells starved anaerobically in the light. Phototrophically grown cells containing poly-beta-hydroxybutyrate as carbon reserve were less able to survive starvation anaerobically in the light than were carbohydrate-rich cells starved under comparable conditions. Light intensity had a significant effect on viability of phototrophically grown cells starving anaerobically. At light intensities of 320 to 650 lx, the half-life survival times were 17 to 24 days. At 2,950 to 10,500 lx, the survival times decreased to 1.5 to 5.5 days. The kinetics of cell death correlated well with the rate of loss of cell mass of starving cells. However, the cause of death could not be attributed to degradation of any specific cell component.


Assuntos
Proteínas de Bactérias/metabolismo , Metabolismo dos Carboidratos , DNA Bacteriano/metabolismo , RNA Bacteriano/metabolismo , Rhodospirillum rubrum/metabolismo , Aerobiose , Anaerobiose , Meia-Vida , Luz
6.
Appl Environ Microbiol ; 33(2): 392-9, 1977 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-848958

RESUMO

Two strains of facultatively anaerobic, N2-fixing bacteria were isolated from guts of Coptotermes formosanus and identified as Enterobacter agglomerans. The deoxyribonucleic acid base composition of isolates was 52.6 and 53.1 mol% guanine plus cytosine. Both isolates and a known strain of E. agglomerans carried out a mixed acid type of glucose fermentation. N2 fixation by E. agglomerans was inhibited by O2; consequently, N2 served as an N source only for cells growing anaerobically in media lacking a major source of combined N. However, peptone, NH4Cl, or KNO3 served as an N source under either aerobic or anaerobic conditions. It was estimated that 2 x 10(2) cells of E. agglomerans were present per termite gut. This value was 100-fold lower than expected, based on N2 fixation, low recoveries of E. agglomerans may be related to the marked decrease in N2 fixation rates observed when intact termites or their extracted guts were manipulated for the isolation of bacteria. It was concluded that the N2-fixing activity of E. agglomerans may be important to the N economy of C. formosanus.


Assuntos
Enterobacteriaceae/isolamento & purificação , Insetos/microbiologia , Anaerobiose , Animais , Citosina/análise , DNA Bacteriano/análise , Enterobacteriaceae/análise , Enterobacteriaceae/metabolismo , Fermentação , Glucose/metabolismo , Guanina/análise , Insetos/metabolismo , Intestinos/microbiologia , Fixação de Nitrogênio , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...