Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 551(2): 229-37, 1979 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33709

RESUMO

A study has been made of the properties of ionic channels formed in phospholipid-cholesterol bilayers by polyene antibiotics of various molecular structures. Properties of channels created by natural antibiotics with different structures of the lactone ring (amphotericin B-nystatin-mycoheptin) as well as by some derivatives of amphotericin B modified with respect to the amino and carboxyl groups are compared. Neutralization of one or both charges of the amphotericin B molecule (both by chemical modification and by pH shift) increases the probability of the channel to be in a nonconducting state. An increase of cholesterol concentration in the membrane produces an opposite effect. It is assumed that the electrostatic interaction of the amino group of an antibiotic molecule with the carboxyl group of an adjacent one stabilized the channel. Conductance and selectivity of an open channel are not influenced by changes in the charged groups. These properties strongly depend on the structure of the polar chain of the lactone ring. For example, the appearance of one more carbonyl group in the mycoheptin molecule results in a sharply decreasing anion permeability of channels. An antibiotic concentration which is necessary to observe single channels depends on the polyene chain structure: this is about 10(-7) M for tetraene nystatin and 2.10(-8) M for heptaene amphotericin B an mycoheptin.


Assuntos
Anfotericina B , Antifúngicos , Canais Iônicos , Nistatina , Colesterol , Concentração de Íons de Hidrogênio , Membranas Artificiais , Fosfolipídeos , Polienos
2.
Biochim Biophys Acta ; 470(3): 357-67, 1977 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-921960

RESUMO

Properties of individual ionic channels formed by polyene antibiotic Amphotericin B were studied on brain phospholipid membranes containing cholesterol. The ionic channels have a closed state and an open one (with conductance of about 6.5 pS in 2 M KCl). The conductance value of an open channel is independent of cholesterol concentration in the membrane of pH in the range from 3.5 to 8.0. The voltage-current characteristics of a single channel are superlinear. Zero current potential value in the case of different KCl concentrations in the two solutions indicates preferential but not ideal anionic selectivity of a single channel. Channel conductivity grows as the electrolyte concentration is increased and tends to a limiting value at high concentrations. A simple model having only one site for an ion was shown to represent satisfactorily an open channel behaviour under different conditions. An individual ionic channel performs a large number of transitions between the open and closed states during its life-time of several minutes. Rate constants of these transitions depend on the kind and concentration of salt in aqueous solutions. The switching system functioning is not influenced by an ion situated inside the pore.


Assuntos
Anfotericina B , Colesterol , Membranas Artificiais , Fosfolipídeos , Transporte Biológico , Condutividade Elétrica , Matemática , Potenciais da Membrana , Modelos Biológicos , Sais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...