Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 39(5): 800-10, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24299612

RESUMO

Mammalian retinas comprise a variety of interneurons, among which amacrine cells represent the largest group, with more than 30 different cell types each exhibiting a rather distinctive morphology and carrying out a unique function in retinal processing. However, many amacrine types have not been studied systematically because, in particular, amacrine cells with large dendritic fields, i.e. wide-field amacrine cells, have a low abundance and are therefore difficult to target. Here, we used a transgenic mouse line expressing the coding sequence of enhanced green fluorescent protein under the promoter for choline acetyltransferase (ChAT-EGFP mouse) and characterized a single wide-field amacrine cell population monostratifying in layer 2/3 of the inner plexiform layer (WA-S2/3 cell). Somata of WA-S2/3 cells are located either in the inner nuclear layer or are displaced to the ganglion cell layer and exhibit a low cell density. Using immunohistochemistry, we show that WA-S2/3 cells are presumably GABAergic but may also release acetylcholine as their somata are weakly positive for ChAT. Two-photon-guided patch-clamp recordings from intact retinas revealed WA-S2/3 cells to be ON-OFF cells with a homogenous receptive field even larger than the dendritic field. The large spatial extent of the receptive field is most likely due to the extensive homologous and heterologous coupling among WA-S2/3 cells and to other amacrine cells, respectively, as indicated by tracer injections. In summary, we have characterized a novel type of GABAergic ON-OFF wide-field amacrine cell which is ideally suited to providing long-range inhibition to ganglion cells due to its strong coupling.


Assuntos
Células Amácrinas/citologia , Células Amácrinas/fisiologia , Animais , Linhagem Celular , Colina O-Acetiltransferase/genética , Neurônios GABAérgicos , Proteínas de Fluorescência Verde/análise , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Patch-Clamp
2.
J Comp Neurol ; 521(5): 1119-35, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22965528

RESUMO

Pannexin1 (Panx1) belongs to a class of vertebrate proteins that exhibits sequence homology to innexins, the invertebrate gap junction proteins, and which also shares topological similarities with vertebrate gap junction proteins, the connexins. Unlike gap junctional channels, Panx1 forms single-membrane channels, whose functional role in neuronal circuits is still unsettled. We therefore investigated the subcellular distribution of Panx1 in the mouse retina of wildtype and Panx1-null mice by reverse-transcription polymerase chain reaction (RT-PCR), immunohistochemistry, and electron microscopy. Use of Panx1-deficient mice served as a model to assess the physiological role of Panx1 by electroretinographic recordings and also to ensure the specificity of the anti-Panx1 antibody labeling. Expression of Panx1 was found in type 3a OFF bipolar cells and in dendrites and axonal processes of horizontal cells. Panx1 was also found in horizontal cell dendrites representing the lateral elements of the triad synapse at cone and rod terminals. In vivo electroretinography of Panx1 knockout mice indicated an increased a- and b-wave compared to Panx1 wildtype mice under scotopic conditions. The effect on the b-wave was confirmed by in vitro electroretinograms from the inner retina. These results suggest that Panx1 channels serve as sinks for extracellular current flow making them possible candidates for the mediation of feedback from horizontal cells to photoreceptors.


Assuntos
Conexinas/deficiência , Proteínas do Tecido Nervoso/deficiência , Neurônios/fisiologia , Retina/anatomia & histologia , Vias Visuais/fisiologia , Animais , Conexinas/genética , Eletrorretinografia , Potenciais Evocados Visuais/genética , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Feminino , Glicosídeo Hidrolases/metabolismo , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Imunoeletrônica , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/classificação , Neurônios/ultraestrutura , Células Bipolares da Retina/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura , Tirosina 3-Mono-Oxigenase/metabolismo
3.
J Vis Exp ; (57)2011 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-22105413

RESUMO

Studying the physiological properties and synaptic connections of specific neurons in the intact tissue is a challenge for those cells that lack conspicuous morphological features or show a low population density. This applies particularly to retinal amacrine cells, an exceptionally multiform class of interneurons that comprise roughly 30 subtypes in mammals(1). Though being a crucial part of the visual processing by shaping the retinal output(2), most of these subtypes have not been studied up to now in a functional context because encountering these cells with a recording electrode is a rare event. Recently, a multitude of transgenic mouse lines is available that express fluorescent markers like green fluorescent protein (GFP) under the control of promoters for membrane receptors or enzymes that are specific to only a subset of neurons in a given tissue(3,4). These pre-labeled cells are therefore accessible to directed microelectrode targeting under microscopic control, permitting the systematic study of their physiological properties in situ. However, excitation of fluorescent markers is accompanied by the risk of phototoxicity for the living tissue. In the retina, this approach is additionally hampered by the problem that excitation light causes appropriate stimulation of the photoreceptors, thus inflicting photopigment bleaching and transferring the retinal circuits into a light-adapted condition. These drawbacks are overcome by using infrared excitation delivered by a mode-locked laser in short pulses of the femtosecond range. Two-photon excitation provides energy sufficient for fluorophore excitation and at the same time restricts the excitation to a small tissue volume minimizing the hazards of photodamage(5). Also, it leaves the retina responsive to visual stimuli since infrared light (>850 nm) is only poorly absorbed by photopigments(6). In this article we demonstrate the use of a transgenic mouse retina to attain electrophysiological in situ recordings from GFP-expressing cells that are visually targeted by two-photon excitation. The retina is prepared and maintained in darkness and can be subjected to optical stimuli which are projected through the condenser of the microscope (Figure 1). Patch-clamp recording of light responses can be combined with dye filling to reveal the morphology and to check for gap junction-mediated dye coupling to neighboring cells, so that the target cell can by studied on different experimental levels.


Assuntos
Eletrofisiologia/métodos , Proteínas de Fluorescência Verde/biossíntese , Retina/fisiologia , Animais , Eletrofisiologia/instrumentação , Proteínas de Fluorescência Verde/genética , Camundongos , Camundongos Transgênicos , Técnicas de Patch-Clamp/métodos , Retina/metabolismo
4.
Int J Biomed Imaging ; 2011: 516942, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21317978

RESUMO

We develop a new formulation, mathematically elegant, to detect critical points of 3D scalar images. It is based on a topological number, which is the generalization to three dimensions of the 2D winding number. We illustrate our method by considering three different biomedical applications, namely, detection and counting of ovarian follicles and neuronal cells and estimation of cardiac motion from tagged MR images. Qualitative and quantitative evaluation emphasizes the reliability of the results.

5.
Biomed Microdevices ; 11(6): 1269-78, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19757074

RESUMO

Multi-unit recording from neuronal networks cultured on microelectrode arrays (MEAs) is a widely used approach to achieve basic understanding of network properties, as well as the realization of cell-based biosensors. However, network formation is random under primary culture conditions, and the cellular arrangement often performs an insufficient fit to the electrode positions. This results in the successful recording of only a small fraction of cells. One possible approach to overcome this limitation is to raise the number of cells on the MEA, thereby accepting an increased complexity of the network. In this study, we followed an alternative strategy to increase the portion of neurons located at the electrodes by designing a network in confined geometries. Guided settlement and outgrowth of neurons is accomplished by taking control over the adhesive properties of the MEA surface. Using microcontact printing a triangular two-dimensional pattern of the adhesion promoter poly-D-lysine was applied to the MEA offering a meshwork that at the same time provides adhesion points for cell bodies matching the electrode positions and gives frequent branching points for dendrites and axons. Low density neocortical networks cultivated under this condition displayed similar properties to random networks with respect to the cellular morphology but had a threefold higher electrode coverage. Electrical activity was dominated by periodic burst firing that could pharmacologically be modulated. Geometry of the network and electrical properties of the patterned cultures were reproducible and displayed long-term stability making the combination of surface structuring and multi-site recording a promising tool for biosensor applications.


Assuntos
Microeletrodos , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Animais , Proliferação de Células , Células Cultivadas , Rede Nervosa/efeitos dos fármacos , Ratos , Ácido gama-Aminobutírico/farmacologia
7.
J Comp Neurol ; 466(4): 468-77, 2003 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-14566943

RESUMO

The first synaptic integration in the neuronal cascade of vision in vertebrates includes a feedback from horizontal cells to cones by a mechanism yet not fully understood. Recent observations in teleosts suggested an electrical feedback mechanism mediated by connexin26 (Cx26) hemichannels at the terminal dendrites of horizontal cells. By using reverse transcription-polymerase chain reaction and immunoblotting from retinal homogenate, we detected Cx26 mRNA transcripts in the turtle retina and demonstrated that they were translated into protein. Cx26 immunoreactivity was especially prominent in the outer plexiform layer. Subcellularly, immunoreactivity was located mainly between horizontal cell axon terminals and in horizontal cell dendrites forming the lateral elements at the ribbon synaptic complex of the cone pedicle. The label was confined to the horizontal cell membrane flanking the ribbon and was not found on the opposing photoreceptor membrane. No gap junctions at this location are known, so immunosignaling suggested the presence of hemichannels. Their relevance to the feedback mechanism was investigated by intracellular recordings from horizontal cells during application of the hemichannel blocker carbenoxolone. Carbenoxolone hyperpolarized the dark membrane potential by about 25 mV, decreased the amplitudes of responses to full-field light flashes, and suppressed the feedback-induced depolarizing inflexion in the response profile. These physiological findings are compatible with the involvement of hemichannels in the feedback between horizontal cells and cones and support the anatomical findings. Together, these data suggest the presence of an electrical feedback mechanism in the turtle retina, which therefore might be a common mechanism at the first visual synapse in vertebrates.


Assuntos
Conexinas/metabolismo , Retroalimentação Fisiológica/fisiologia , Células Fotorreceptoras de Vertebrados/metabolismo , Tartarugas/fisiologia , Animais , Carbenoxolona/farmacologia , Conexina 26 , Conexinas/genética , Retroalimentação Fisiológica/efeitos dos fármacos , Feminino , Immunoblotting , Imuno-Histoquímica , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Microscopia Eletrônica , Estimulação Luminosa , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/ultraestrutura , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...