Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Occup Ther Int ; 2023: 9641922, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36815121

RESUMO

Introduction: Male breast cancer is rare and frequently diagnosed at later stages of disease with low survival rates. There is a lack of knowledge of how breast cancer impacts men's occupations. Objectives: This study is aimed at understanding the lived experiences of men with breast cancer and their changes in occupation. Methodology. Twenty-four men with breast cancer participated in semistructured phone interviews. Data was open-coded and analyzed for themes. Findings. The six major themes are as follows: (1) death as a reality, (2) unique personal insights, (3) social environment, (4) interactions with the healthcare system, (5) decreased engagement in occupations, and (6) finding meaning in new occupations. Conclusion: The healthcare team can improve the patient experience by discussing and responding to the client's experience throughout the diagnosis, intervention, and survival continuum. The scope of occupational therapy is well suited to address the needs of men with breast cancer to maintain optimal levels of functioning.


Assuntos
Neoplasias da Mama Masculina , Terapia Ocupacional , Humanos , Masculino , Ocupações
2.
PLoS One ; 5(8): e12021, 2010 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-20711496

RESUMO

Cellular mechanisms of secondary damage progression following spinal cord injury remain unclear. We have studied the extent of tissue damage from 15 min to 10 weeks after injury using morphological and biochemical estimates of lesion volume and surviving grey and white matter. This has been achieved by semi-quantitative immunocytochemical methods for a range of cellular markers, quantitative counts of white matter axonal profiles in semi-thin sections and semi-quantitative Western blot analysis, together with behavioural tests (BBB scores, ledged beam, random rung horizontal ladder and DigiGait analysis). We have developed a new computer-controlled electronic impactor based on a linear motor that allows specification of the precise nature, extent and timing of the impact. Initial (15 min) lesion volumes showed very low variance (1.92+/-0.23 mm3, mean+/-SD, n=5). Although substantial tissue clearance continued for weeks after injury, loss of grey matter was rapid and complete by 24 hours, whereas loss of white matter extended up to one week. No change was found between one and 10 weeks after injury for almost all morphological and biochemical estimates of lesion size or behavioural methods. These results suggest that previously reported apparent ongoing injury progression is likely to be due, to a large extent, to clearance of tissue damaged by the primary impact rather than continuing cell death. The low variance of the impactor and the comprehensive assessment methods described in this paper provide an improved basis on which the effects of potential treatment regimes for spinal cord injury can be assessed.


Assuntos
Sistema Nervoso Central/patologia , Contusões/patologia , Traumatismos da Medula Espinal/patologia , Animais , Axônios/patologia , Comportamento Animal , Western Blotting , Contagem de Células , Sistema Nervoso Central/metabolismo , Contusões/metabolismo , Progressão da Doença , Masculino , Fibras Nervosas Mielinizadas/patologia , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/metabolismo , Fatores de Tempo
3.
Eur J Neurosci ; 29(2): 253-66, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19200232

RESUMO

Choroid plexus epithelial cells secrete cerebrospinal fluid (CSF) and transfer molecules from blood into CSF. Tight junctions between choroidal epithelial cells are functionally effective from early in development: the route of transfer is suggested to be transcellular. Routes of transfer for endogenous and exogenous plasma proteins and dextrans were studied in Monodelphis domestica (opossum). Pups at postnatal (P) days 1-65 and young adults were injected with biotinylated dextrans (3-70 kDa) and/or foetal protein fetuin. CSF, plasma and brain samples were collected from terminally anaesthetized animals. Choroid plexus cells containing plasma proteins were detected immunocytochemically. Numbers of plasma protein-positive epithelial cells increased to adult levels by P28, but their percentage of plexus cells declined. Numbers of cells positive for biotinylated probes increased with age, while their percentage remained constant. Colocalization studies showed specificity for individual proteins in some epithelial cells. Biotinylated probes and endogenous proteins colocalized in about 10% of cells in younger animals, increasing towards 100% by adulthood. Injections of markers into the ventricles demonstrated that protein is transferred only from blood into CSF, whereas dextrans pass in both directions. These results indicate that protein and lipid-insoluble markers are transferred by separate mechanisms present in choroid plexuses from the earliest stage of brain development, and transfer of proteins from plasma across choroid plexus epithelial cells contributes to the high protein concentration in CSF in the immature brain.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/crescimento & desenvolvimento , Líquido Cefalorraquidiano/metabolismo , Plexo Corióideo/crescimento & desenvolvimento , Células Epiteliais/metabolismo , Monodelphis/crescimento & desenvolvimento , Animais , Transporte Biológico Ativo/fisiologia , Biomarcadores/análise , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Barreira Hematoencefálica/citologia , Encéfalo/citologia , Encéfalo/metabolismo , Líquido Cefalorraquidiano/química , Plexo Corióideo/citologia , Plexo Corióideo/metabolismo , Células Epiteliais/citologia , Feminino , Ventrículos Laterais/citologia , Ventrículos Laterais/crescimento & desenvolvimento , Ventrículos Laterais/metabolismo , Masculino , Modelos Animais , Sondas Moleculares/análise , Sondas Moleculares/líquido cefalorraquidiano , Monodelphis/anatomia & histologia , Monodelphis/metabolismo , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/sangue , Proteínas do Tecido Nervoso/líquido cefalorraquidiano
4.
Neurosci Lett ; 451(3): 232-6, 2009 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-19152829

RESUMO

Developmental white matter damage is a brain pathology associated with several long-term neurological disorders. An inflammatory insult has been suggested as the major instigating event. This study investigated the relative influence of inflammation, blood-brain barrier permeability and glial ontogeny in white matter damage. Systemic inflammation was induced in Monodelphis domestica (opossum) by serial intraperitoneal injections of lipopolysaccharide at different stages of brain development. Volume of white matter was estimated for the external capsule. Blood-brain barrier permeability was assessed immunocytochemically. Quantitative RT-PCR was used to measure relative levels of mRNA for IL-1beta, IL-6 and COX-2. Developmental changes in numbers and appearance of microglia and astrocytes were estimated. Results showed that in response to systemic inflammation, white matter was reduced in the external capsule during a circumscribed period only. At the same developmental stage blood-brain barrier permeability was altered, cerebral inflammatory response was present and numbers of microglia increased. However, the periods of altered blood-brain barrier permeability and the cerebral inflammatory response were longer than the period of the external capsule's susceptibility to white matter damage, which coincided with the developmental increase in the number of astrocytes in this tract. Thus, the mechanism of white matter damage following systemic inflammation is multifactorial, including cerebral inflammation and breakdown of brain barriers occurring simultaneously at specific stages of glial cell development.


Assuntos
Barreira Hematoencefálica/fisiopatologia , Encéfalo/embriologia , Encéfalo/fisiopatologia , Encefalite/fisiopatologia , Fibras Nervosas Mielinizadas/patologia , Degeneração Walleriana/fisiopatologia , Animais , Astrócitos/patologia , Diferenciação Celular/fisiologia , Paralisia Cerebral/etiologia , Paralisia Cerebral/patologia , Paralisia Cerebral/fisiopatologia , Ciclo-Oxigenase 2/genética , Modelos Animais de Doenças , Feminino , Gliose/etiologia , Gliose/patologia , Gliose/fisiopatologia , Interleucina-1beta/genética , Interleucina-6/genética , Microglia/patologia , Monodelphis , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Gravidez , Complicações Infecciosas na Gravidez/patologia , Complicações Infecciosas na Gravidez/fisiopatologia , RNA Mensageiro/análise , RNA Mensageiro/metabolismo
5.
Exp Neurol ; 204(1): 220-33, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17188268

RESUMO

Cerebral inflammation and apoptotic cell death are two processes implicated in the progressive tissue damage that occurs following traumatic brain injury (TBI), and strategies to inhibit one or both of these pathways are being investigated as potential therapies for TBI patients. The tetracycline derivative minocycline was therapeutically effective in various models of central nervous system injury and disease, via mechanisms involving suppression of inflammation and apoptosis. We therefore investigated the effect of minocycline in TBI using a closed head injury model. Following TBI, mice were treated with minocycline or vehicle, and the effect on neurological outcome, lesion volume, inflammation and apoptosis was evaluated for up to 7 days. Our results show that while minocycline decreases lesion volume and improves neurological outcome at 1 day post-trauma, this response is not maintained at 4 days. The early beneficial effect is likely not due to anti-apoptotic mechanisms, as the density of apoptotic cells is not affected at either time-point. However, protection by minocycline is associated with a selective anti-inflammatory response, in that microglial activation and interleukin-1beta expression are reduced, while neutrophil infiltration and expression of multiple cytokines are not affected. These findings demonstrate that further studies on minocycline in TBI are necessary in order to consider it as a novel therapy for brain-injured patients.


Assuntos
Apoptose/efeitos dos fármacos , Lesões Encefálicas/fisiopatologia , Microglia/efeitos dos fármacos , Minociclina/farmacologia , Fármacos Neuroprotetores/farmacologia , Infiltração de Neutrófilos/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/fisiopatologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Contagem de Células , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Traumatismos Cranianos Fechados/fisiopatologia , Interleucina-1beta/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/patologia , Atividade Motora/efeitos dos fármacos , Sistema Nervoso/efeitos dos fármacos , Sistema Nervoso/fisiopatologia , Neutrófilos/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA