Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 212, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017500

RESUMO

Ultrastable lasers are essential tools in optical frequency metrology enabling unprecedented measurement precision that impacts on fields such as atomic timekeeping, tests of fundamental physics, and geodesy. To characterise an ultrastable laser it needs to be compared with a laser of similar performance, but a suitable system may not be available locally. Here, we report a comparison of two geographically separated lasers, over the longest ever reported metrological optical fibre link network, measuring 2220 km in length, at a state-of-the-art fractional-frequency instability of 7 × 10-17 for averaging times between 30 s and 200 s. The measurements also allow the short-term instability of the complete optical fibre link network to be directly observed without using a loop-back fibre. Based on the characterisation of the noise in the lasers and optical fibre link network over different timescales, we investigate the potential for disseminating ultrastable light to improve the performance of remote optical clocks.

2.
Appl Opt ; 57(25): 7203-7210, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30182980

RESUMO

We report on a fully bidirectional 680 km fiber link connecting two cities for which the equipment, the setup, and the characterization are managed for the first time by an industrial consortium. The link uses an active telecommunication fiber network with parallel data traffic and is equipped with three repeater laser stations and four remote double bidirectional erbium-doped fiber amplifiers. We report a short-term stability at 1 s integration time of 5.4×10-16 in 0.5 Hz bandwidth and a long-term stability of 1.7×10-20 at 65,000 s of integration time. The accuracy of the frequency transfer is evaluated as 3×10-20. No shift is observed within the statistical uncertainty. We show a continuous operation over five days with an uptime of 99.93%. This performance is comparable with the state-of-the-art coherent links established by National Metrology Institutes in Europe. It is a first step in the construction of an optical fiber network for metrology in France, which will give access to an ultrahigh performance frequency standard to a wide community of scientific users.

3.
Phys Rev Lett ; 118(22): 221102, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28621983

RESUMO

Phase compensated optical fiber links enable high accuracy atomic clocks separated by thousands of kilometers to be compared with unprecedented statistical resolution. By searching for a daily variation of the frequency difference between four strontium optical lattice clocks in different locations throughout Europe connected by such links, we improve upon previous tests of time dilation predicted by special relativity. We obtain a constraint on the Robertson-Mansouri-Sexl parameter |α|≲1.1×10^{-8}, quantifying a violation of time dilation, thus improving by a factor of around 2 the best known constraint obtained with Ives-Stilwell type experiments, and by 2 orders of magnitude the best constraint obtained by comparing atomic clocks. This work is the first of a new generation of tests of fundamental physics using optical clocks and fiber links. As clocks improve, and as fiber links are routinely operated, we expect that the tests initiated in this Letter will improve by orders of magnitude in the near future.

4.
Nat Commun ; 7: 12443, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27503795

RESUMO

Leveraging the unrivalled performance of optical clocks as key tools for geo-science, for astronomy and for fundamental physics beyond the standard model requires comparing the frequency of distant optical clocks faithfully. Here, we report on the comparison and agreement of two strontium optical clocks at an uncertainty of 5 × 10(-17) via a newly established phase-coherent frequency link connecting Paris and Braunschweig using 1,415 km of telecom fibre. The remote comparison is limited only by the instability and uncertainty of the strontium lattice clocks themselves, with negligible contributions from the optical frequency transfer. A fractional precision of 3 × 10(-17) is reached after only 1,000 s averaging time, which is already 10 times better and more than four orders of magnitude faster than any previous long-distance clock comparison. The capability of performing high resolution international clock comparisons paves the way for a redefinition of the unit of time and an all-optical dissemination of the SI-second.

5.
Opt Lett ; 26(21): 1639-41, 2001 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18049684

RESUMO

We present what is to our knowledge the first observation of spin-polarized atoms cooled within a reflecting cylinder in a high-power medium. A low-pressure vapor of cesium atoms is stored in a glass cell whose volume is 58 cm(3). Cooling laser light (lambda=852 nm) is injected into the cell by optical fibers and is recycled by multiple reflections from the walls of the cylinder. The technique used in this experiment greatly simplifies the generation of laser-cooled atoms. A maximum of 2.5 x 10(8) cold atoms was detected by a time-of-flight technique. The damping of atomic motion has lead to temperatures as low as 3.5muK .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...