Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 11(13): 8542-8561, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34257915

RESUMO

Phenotypic variability results from interactions between genotype and environment and is a major driver of ecological and evolutionary interactions. Measuring the relative contributions of genetic variation, the environment, and their interaction to phenotypic variation remains a fundamental goal of evolutionary ecology.In this study, we assess the question: How do genetic variation and local environmental conditions interact to influence phenotype within a single population? We explored this question using seed from a single population of common milkweed, Asclepias syriaca, in northern Michigan. We first measured resistance and resistance traits of 14 maternal lines in two common garden experiments (field and greenhouse) to detect genetic variation within the population. We carried out a reciprocal transplant experiment with three of these maternal lines to assess effects of local environment on phenotype. Finally, we compared the phenotypic traits measured in our experiments with the phenotypic traits of the naturally growing maternal genets to be able to compare relative effect of genetic and environmental variation on naturally occurring phenotypic variation. We measured defoliation levels, arthropod abundances, foliar cardenolide concentrations, foliar latex exudation, foliar carbon and nitrogen concentrations, and plant growth.We found a striking lack of correlation in trait expression of the maternal lines between the common gardens, or between the common gardens and the naturally growing maternal genets, suggesting that environment plays a larger role in phenotypic trait variation of this population. We found evidence of significant genotype-by-environment interactions for all traits except foliar concentrations of nitrogen and cardenolide. Milkweed resistance to chewing herbivores was associated more strongly with the growing environment. We observed no variation in foliar cardenolide concentrations among maternal lines but did observe variation among maternal lines in foliar latex exudation.Overall, our data reveal powerful genotype-by-environment interactions on the expression of most resistance traits in milkweed.

2.
J Anim Ecol ; 90(3): 628-640, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33241571

RESUMO

Animals rely on a balance of endogenous and exogenous sources of immunity to mitigate parasite attack. Understanding how environmental context affects that balance is increasingly urgent under rapid environmental change. In herbivores, immunity is determined, in part, by phytochemistry which is plastic in response to environmental conditions. Monarch butterflies Danaus plexippus, consistently experience infection by a virulent parasite Ophryocystis elektroscirrha, and some medicinal milkweed (Asclepias) species, with high concentrations of toxic steroids (cardenolides), provide a potent source of exogenous immunity. We investigated plant-mediated influences of elevated CO2 (eCO2 ) on endogenous immune responses of monarch larvae to infection by O. elektroscirrha. Recently, transcriptomics have revealed that infection by O. elektroscirrha does not alter monarch immune gene regulation in larvae, corroborating that monarchs rely more on exogenous than endogenous immunity. However, monarchs feeding on medicinal milkweed grown under eCO2 lose tolerance to the parasite, associated with changes in phytochemistry. Whether changes in milkweed phytochemistry induced by eCO2 alter the balance between exogenous and endogenous sources of immunity remains unknown. We fed monarchs two species of milkweed; A. curassavica (medicinal) and A. incarnata (non-medicinal) grown under ambient CO2 (aCO2 ) or eCO2 . We then measured endogenous immune responses (phenoloxidase activity, haemocyte concentration and melanization strength), along with foliar chemistry, to assess mechanisms of monarch immunity under future atmospheric conditions. The melanization response of late-instar larvae was reduced on medicinal milkweed in comparison to non-medicinal milkweed. Moreover, the endogenous immune responses of early-instar larvae to infection by O. elektroscirrha were generally lower in larvae reared on foliage from aCO2 plants and higher in larvae reared on foliage from eCO2 plants. When grown under eCO2 , milkweed plants exhibited lower cardenolide concentrations, lower phytochemical diversity and lower nutritional quality (higher C:N ratios). Together, these results suggest that the loss of exogenous immunity from foliage under eCO2 results in increased endogenous immune function. Animal populations face multiple threats induced by anthropogenic environmental change. Our results suggest that shifts in the balance between exogenous and endogenous sources of immunity to parasite attack may represent an underappreciated consequence of environmental change.


Assuntos
Asclepias , Borboletas , Animais , Dióxido de Carbono , Herbivoria , Interações Hospedeiro-Parasita , Imunidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...