Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 381(6664): 1287-1288, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37733861

RESUMO

Mitochondrial metabolite reduces melanoma growth by boosting antigen presentation.


Assuntos
Apresentação de Antígeno , Melanoma , Mitocôndrias , Humanos , Melanoma/imunologia , Melanoma/patologia , Mitocôndrias/metabolismo , Carcinogênese/imunologia , Carcinogênese/patologia
2.
Cell Rep ; 42(7): 112751, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37405921

RESUMO

Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a cancer syndrome caused by inactivating germline mutations in fumarate hydratase (FH) and subsequent accumulation of fumarate. Fumarate accumulation leads to profound epigenetic changes and the activation of an anti-oxidant response via nuclear translocation of the transcription factor NRF2. The extent to which chromatin remodeling shapes this anti-oxidant response is currently unknown. Here, we explored the effects of FH loss on the chromatin landscape to identify transcription factor networks involved in the remodeled chromatin landscape of FH-deficient cells. We identify FOXA2 as a key transcription factor that regulates anti-oxidant response genes and subsequent metabolic rewiring cooperating without direct interaction with the anti-oxidant regulator NRF2. The identification of FOXA2 as an anti-oxidant regulator provides additional insights into the molecular mechanisms behind cell responses to fumarate accumulation and potentially provides further avenues for therapeutic intervention for HLRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Leiomiomatose , Síndromes Neoplásicas Hereditárias , Neoplasias Cutâneas , Neoplasias Uterinas , Feminino , Humanos , Fumarato Hidratase/genética , Antioxidantes , Fator 2 Relacionado a NF-E2/genética , Leiomiomatose/genética , Neoplasias Uterinas/genética , Neoplasias Cutâneas/genética , Síndromes Neoplásicas Hereditárias/genética , Cromatina , Neoplasias Renais/genética , Carcinoma de Células Renais/genética , Fator 3-beta Nuclear de Hepatócito/genética
3.
EMBO J ; 41(23): e111239, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36278281

RESUMO

Bone-derived mesenchymal stem cells (MSCs) reside in a hypoxic niche that maintains their differentiation potential. While hypoxia (low oxygen concentration) was reported to critically support stem cell function and osteogenesis, the molecular events triggering changes in stem cell fate decisions in response to normoxia (high oxygen concentration) remain elusive. Here, we study the impact of normoxia on mitochondrial-nuclear communication during stem cell differentiation. We show that normoxia-cultured murine MSCs undergo profound transcriptional alterations which cause irreversible osteogenesis defects. Mechanistically, high oxygen promotes chromatin compaction and histone hypo-acetylation, particularly on promoters and enhancers of osteogenic genes. Although normoxia induces metabolic rewiring resulting in elevated acetyl-CoA levels, histone hypo-acetylation occurs due to the trapping of acetyl-CoA inside mitochondria owing to decreased citrate carrier (CiC) activity. Restoring the cytosolic acetyl-CoA pool remodels the chromatin landscape and rescues the osteogenic defects. Collectively, our results demonstrate that the metabolism-chromatin-osteogenesis axis is perturbed upon exposure to high oxygen levels and identifies CiC as a novel, oxygen-sensitive regulator of the MSC function.


Assuntos
Histonas , Osteogênese , Camundongos , Animais , Osteogênese/fisiologia , Acetilcoenzima A/metabolismo , Histonas/metabolismo , Diferenciação Celular/fisiologia , Mitocôndrias/metabolismo , Hipóxia/metabolismo , Oxigênio/metabolismo , Cromatina/metabolismo , Células Cultivadas
4.
Brief Funct Genomics ; 21(1): 35-42, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33738480

RESUMO

Ageing is accompanied by loss of tissue integrity and organismal homeostasis partly due to decline in stem cell function. The age-associated decrease in stem cell abundance and activity is often referred to as stem cell exhaustion and is considered one major hallmark of ageing. Importantly, stem cell proliferation and differentiation potential are tightly coupled to the cellular epigenetic state. Thus, research during the last years has started to investigate how the epigenome regulates stem cell function upon ageing. Here, we summarize the role of epigenetic regulation in stem cell fate decisions and we review the impact of age-related changes of the epigenome on stem cell activity. Finally, we discuss how targeted interventions on the epigenetic landscape might delay ageing and extend health-span.


Assuntos
Senescência Celular , Epigênese Genética , Diferenciação Celular/genética , Senescência Celular/genética , Células-Tronco/fisiologia
5.
EMBO Mol Med ; 13(8): e14150, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34133077

RESUMO

Innate immunity triggers responsible for viral control or hyperinflammation in COVID-19 are largely unknown. Here we show that the SARS-CoV-2 spike protein (S-protein) primes inflammasome formation and release of mature interleukin-1ß (IL-1ß) in macrophages derived from COVID-19 patients but not in macrophages from healthy SARS-CoV-2 naïve individuals. Furthermore, longitudinal analyses reveal robust S-protein-driven inflammasome activation in macrophages isolated from convalescent COVID-19 patients, which correlates with distinct epigenetic and gene expression signatures suggesting innate immune memory after recovery from COVID-19. Importantly, we show that S-protein-driven IL-1ß secretion from patient-derived macrophages requires non-specific monocyte pre-activation in vivo to trigger NLRP3-inflammasome signaling. Our findings reveal that SARS-CoV-2 infection causes profound and long-lived reprogramming of macrophages resulting in augmented immunogenicity of the SARS-CoV-2 S-protein, a major vaccine antigen and potent driver of adaptive and innate immune signaling.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Imunidade Inata , Inflamassomos , Interleucina-1beta , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , SARS-CoV-2
6.
J Cell Sci ; 134(9)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33973637

RESUMO

Stem cell differentiation is accompanied by increased mRNA translation. The rate of protein biosynthesis is influenced by the polyamines putrescine, spermidine and spermine, which are essential for cell growth and stem cell maintenance. However, the role of polyamines as endogenous effectors of stem cell fate and whether they act through translational control remains obscure. Here, we investigate the function of polyamines in stem cell fate decisions using hair follicle stem cell (HFSC) organoids. Compared to progenitor cells, HFSCs showed lower translation rates, correlating with reduced polyamine levels. Surprisingly, overall polyamine depletion decreased translation but did not affect cell fate. In contrast, specific depletion of natural polyamines mediated by spermidine/spermine N1-acetyltransferase (SSAT; also known as SAT1) activation did not reduce translation but enhanced stemness. These results suggest a translation-independent role of polyamines in cell fate regulation. Indeed, we identified N1-acetylspermidine as a determinant of cell fate that acted through increasing self-renewal, and observed elevated N1-acetylspermidine levels upon depilation-mediated HFSC proliferation and differentiation in vivo. Overall, this study delineates the diverse routes of polyamine metabolism-mediated regulation of stem cell fate decisions. This article has an associated First Person interview with the first author of the paper.


Assuntos
Folículo Piloso , Espermina , Acetiltransferases/genética , Diferenciação Celular , Espermidina , Células-Tronco
7.
Bioessays ; 43(5): e2000273, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33629755

RESUMO

Bone-marrow mesenchymal stem cell (BM-MSC) proliferation and lineage commitment are under the coordinated control of metabolism and epigenetics; the MSC niche contains low oxygen, which is an important determinant of the cellular metabolic state. In turn, metabolism drives stem cell fate decisions via alterations of the chromatin landscape. Due to the fundamental role of BM-MSCs in the development of adipose tissue, bones and cartilage, age-associated changes in metabolism and the epigenome perturb the balance between stem cell proliferation and differentiation leading to stem cell depletion, fat accumulation and bone-quality related diseases. Therefore, understanding the dynamics of the metabolism-chromatin interplay is crucial for maintaining the stem cell pool and delaying the development and progression of ageing. This review summarizes the current knowledge on the role of metabolism in stem cell identity and highlights the impact of the metabolic inputs on the epigenome, with regards to stemness and pluripotency.


Assuntos
Células-Tronco Mesenquimais , Medula Óssea , Células da Medula Óssea , Diferenciação Celular , Proliferação de Células/genética , Cromatina/genética
8.
Nat Aging ; 1(9): 810-825, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-37117628

RESUMO

Aging is accompanied by a general decline in the function of many cellular pathways. However, whether these are causally or functionally interconnected remains elusive. Here, we study the effect of mitochondrial-nuclear communication on stem cell aging. We show that aged mesenchymal stem cells exhibit reduced chromatin accessibility and lower histone acetylation, particularly on promoters and enhancers of osteogenic genes. The reduced histone acetylation is due to impaired export of mitochondrial acetyl-CoA, owing to the lower levels of citrate carrier (CiC). We demonstrate that aged cells showed enhanced lysosomal degradation of CiC, which is mediated via mitochondrial-derived vesicles. Strikingly, restoring cytosolic acetyl-CoA levels either by exogenous CiC expression or via acetate supplementation, remodels the chromatin landscape and rescues the osteogenesis defects of aged mesenchymal stem cells. Collectively, our results establish a tight, age-dependent connection between mitochondrial quality control, chromatin and stem cell fate, which are linked together by CiC.


Assuntos
Histonas , Células-Tronco Mesenquimais , Histonas/metabolismo , Osteogênese/genética , Acetilcoenzima A/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Células-Tronco Mesenquimais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...